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Abstract

This project proposes an innovative portable, low-cost, and low-power method of
mmWave radar imaging, and explores its concealed weapon detection and classifica-
tion capabilities. A 3D radar scan of a concealed object is produced using a scanning
device that combines mmWave radar sensor for imaging purposes and a smartphone
for position tracking. Classification is performed on these 3D radar scans using a
resource-efficient convolutional neural network. A physical prototype implementing
this method was built and evaluated. The prototype achieves a high 85%+ classi-
fication accuracy amongst three object classes, demonstrating the viability of the
proposed method.
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Chapter 1

Introduction

Millimetre wave (mmWave) radar refers to a class of radar technologies that operate
in the 30 − 300 GHz frequency range. The technology has been around for well over
a century, but has seen a recent resurgence of academic and commercial interest [1].
Nowadays, mmWave technologies are used in a wide range of areas, including 5G
cellular networks and airport security scanners [2, 3].
This project will explore the use of mmWave as a means of radar imaging. As a
form of imaging technology, it has a few distinct advantages over its alternatives
(discussed in Section 2.1):

• The high operating frequency means that the physical antennas can be small,
reducing the hardware footprint and making the sensor compact,

• The large bandwidth of the sensors, often in the region of 4 GHz, provides
a higher transmission rate and better interference resistance, as well as finer
imaging resolution,

• The high frequencies mean that multiple sensors configured to a short-range
scan can operate on the same frequency without interfering with one another,

• The nature of mmWave signals means that they easily penetrate clothes, card-
board, and other organic-based materials, but are reflected off of metallic
objects, making it an ideal technology for security imaging purposes [4].

• There have been recent advances in developing efficient low-power mmWave
sensors [5].

mmWave radar has a lot of potential, especially due to its compact antenna size
and low-power sensors. However, existing imaging methods that utilise mmWave
technology, such as the ones used in the aforementioned airport security scanners, are
often very limited – the devices are bulky and expensive, requiring an uninterrupted
power supply to operate.
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

While more portable imaging methods exist, they have major caveats when it comes
to their operation. For example, infrared cameras do not work reliably when imaging
objects of similar temperatures, such as weapons in a crate.
As such, there is a distinct niche to be filled with a portable, low-power, and low-cost
radar imaging method. This dissertation proposes such a method and demonstrates
its viability via a prototype.
While radar imaging has a wide variety of applications, ranging from industrial use
for quality control on a factory production belt, to object detection for autonomous
vehicles, I will focus on its applicability to concealed weapon detection (CWD). This
is an area of research that focuses on detecting and potentially classifying weapons in
environments whereby the weapon is hidden or obstructed from view by some means.
Examples include detecting firearms concealed on-person, or screening containers for
illegal weapons.
The rest of the chapter discusses the motivation behind this research, followed by
a high-level description of the proposed radar imaging method. The chapter then
concludes with an explanation of the structure of this dissertation.

1.1 Motivation

As will be discussed in more detail in Section 2.1, existing forms of portable imaging
technologies are very limited in their capabilities. One of the most common forms of
“imaging” in high-security places are static or portable metal detectors. These are
very crude devices that are unable to identify the nature of the detected metallic
object, merely signalling to the operator that some metal was found on-person or in
a piece of luggage. These leaves the operator vulnerable due to lack of awareness.
More advanced technologies such as infrared cameras are able to provide higher-
fidelity imaging, but are limited to distinguishing between objects with temperature
differences. This is useful when attempting to detect weapons concealed on-person
but fails in common security scenarios such as being able to identify weapons in a
crate.
The latter scenario can be solved by using X-Ray technologies. However, X-Ray
scanners often require a stable and high-voltage power supply, and are mostly static
by nature. While there have been demonstrations of portable X-Ray scanners for
military use, these carry a high radiation risk to the operator and surrounding
environment, limiting their applicability in civilian or commercial environments [6].
On the other hand, mmWave frequencies are considered non-ionising, making them
safe for human exposure [7]. As previously mentioned, mmWave scanners are also
low-powered in stark contrast to X-Ray scanners. This makes mmWave a natural
choice to explore as a form radar imaging technology.
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1.2. REAL-WORLD APPLICATIONS CHAPTER 1. INTRODUCTION

1.2 Real-World Applications

mmWave radar imaging has a lot of potential use-cases. One such case is being
considered by Stofl, a UK-based startup currently engaged in developing infrastruc-
ture and solutions that combine Blockchain and Low-Power-WAN technologies [8].
Stofl is partnering with anti-poaching charities in South Africa to assist their ef-
forts, specifically with weapon detection. The project requires a low-power, and
low-cost method of detecting and classifying concealed metallic objects to assist in
anti-poaching exercises.
Existing methods are not very well suited to a Savannah environment, where the
weapon detection systems need to be transported around in light vehicles and where
there is a distinct lack of constant power sources due to the mobile nature of the
operations. These efforts are also mainly volunteer-run, with subsequently very low
funding [9].
South Africa has the largest rhinoceros population in the world and has been at the
forefront of rhino conservation. Unfortunately, from 2007-2014, it has seen a 9, 000%
increase in rhino poaching [10]. Elephant poaching in South Africa is also a source
of major concern – roughly 40, 000 elephants are killed a year for their ivory [11].
This alarming rise in numbers is a call to action.
While poachers often do not pose a direct threat to rangers, who monitor and
protect the animals and their natural habitats, the poachers are often well-trained
and armed. They often use weapons – guns and knives – to hunt their pray and
extract products such as ivory. Rangers hence constantly risk their lives during
interventions as they often have insufficient information about the exact intentions
and capabilities of the poachers. This is where CWD proves to be invaluable: it
allows rangers to assess the situation at a distance to form an appropriate plan of
action and to gauge the threat level in case back-up is needed.

1.3 Proposed Method

The mmWave radar imaging method proposed in this project aims to tackle the
pitfalls of the existing CWD and radar imaging methods that were outlined above.
Namely, their cost, high power requirements, and static nature. The method pro-
posed below is portable in nature and can be put into practice using cheap off-the-
shelf components, as will be discussed in Section 1.3.1 and Chapter 3.
The proposed method is as follows: a mmWave radar sensor is used in combination
with a position and orientation tracking device to produce 3D radar scans of con-
cealed objects. The 3D scan is formed by combining multiple 2D radar scans taken
from different points-of-view. To combine the 2D scans into a single 3D image, the
position and orientation of the radar scanner at the time of each scan is needed.
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As previously mentioned, mmWave signals easily penetrate clothes, cardboard, and
other organic-based materials, but are reflected off of metallic objects. This means
that the produced radar scans highlight the rough 3D shape of any concealed metallic
object. Classification is performed on these 3D scans via a neural network to identify
the exact nature of the concealed object.
This method is developed further in subsequent chapters and is put into practice
via a physical prototype. A brief comparison between the produced prototype and
existing commercial imaging methods is drawn in the subsection below.

1.3.1 Comparison

The prototype uses a radar sensor with a unit price of 358.80 USD, and an Android
phone retailing at roughly 200 USD for tracking purposes. This places the total unit
cost at just over 550 USD. As will be shown in Section 6.2, the prototype achieves
a high classification accuracy of 85%+.
In comparison, a mmWave body scanner used in airports retailed for around 170, 000
USD in 2010 (230, 000 USD, adjusted for inflation) [12]. A basic metal detector
retails for around 1, 000 USD. In both cases, the prototype is significantly cheaper
and offers comparable or better features – a metal detector cannot classify the
detected objects, for example.
This serves as a testament to the advancement in low-cost radar imaging technology
that this project develops.

1.4 Dissertation Structure

The rest of the dissertation is structured as follows:

• Background Chapter 2 covers the existing technical information needed to
understand and appreciate the contributions of this dissertation. The chapter
starts with an overview of existing CWD methods to highlight pitfalls and
areas where they can be improved. The theory behind mmWave radar is then
discussed together with an introduction to Visual Inertial Odometry (VIO),
which is the position tracking method of choice for this project. Finally, the
fundamentals of Deep Learning and its applicability to this project is discussed.

• Scanner Design Chapter 3 derives the problem statement and the subse-
quent scope of this project. The chapter then goes on to discuss the design
decisions behind the proposed method, based on the project requirements out-
lined. These design decisions also include the prototype design, the choice of
mmWave radar, tracking, and classification method.

• Methodology Chapter 4 provides a description of the algorithms used in the
proposed method. This chapter also describes the experiment setup for demon-
strating the prototype’s capabilities, and the data post-processing pipeline
employed for the classification task.
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1.4. DISSERTATION STRUCTURE CHAPTER 1. INTRODUCTION

• Implementation Chapter 5 details the produced work as an implementation
of the proposed method, including the hardware and software components of
the prototype.

• Evaluation Chapter 6 describes the steps performed to verify the correctness
of implementation of the method, and presents the prototype’s experimental
results. This is followed by a discussion of said results and the prototype as a
whole.

• Related Work Chapter 7 contrasts the findings and proposed method of this
project to previous work done in the field of CWD using mmWave radar; and
how this project improves upon existing methods.

• Conclusion Chapter 8 summarises and draws conclusions from the project,
and suggests potential extensions to the proposed method and prototype.
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Chapter 2

Background

This chapter will cover existing technical information that is needed to understand
the subsequent work that will be presented in this dissertation. A variety of weapon
detection mechanisms and their pros and cons will be first discussed in Section 2.1.
This will be taken as an opportunity to highlight the niche that is being targeted
with the imaging method being proposed.
Section 2.2 will talk about the theory behind mmWave radar sensors and discuss the
data they are able to produce. A short introduction to Visual Inertial Odometry
(VIO) as a method of position tracking will be presented in Section 2.3. This
tracking method will be used in the project to estimate the position and orientation
of the mmWave radar device for the purposes of producing a 3D radar scan.
Finally, Section 2.4 will introduce Deep Learning and Convolutional Neural Net-
works (CNNs) as classification algorithms. 3D variants of traditional CNNs will be
used in this project to perform the classification of the obtained 3D radar scans of
concealed objects.

2.1 Weapon Detection

Concealed Weapon Detection (CWD) has significant real-world security applica-
tions, ranging from airport security to counter-terrorism. It is a well-studied subject
with a wide variety of approaches. The choice of method usually depends on the
constraints of a particular environment and the usable budget.
This section will cover these various methods together with the context in which
they are commonly used and their specific advantages and disadvantages.

2.1.1 Metal Detectors

Metal detectors are one of the most common forms of weapon detection. They are
nearly ubiquitously present in airports and other high-security locations such as
embassies and nightclubs.
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They perform a very basic function – namely detecting the presence of metallic
objects. Metal detectors do not usually perform any classification, but are cheap
and effective as an initial screening test. For example, if the metal detector rings
in an airport you’re often invited to a further scan via a mmMave body scanner.
Metal detectors are often used for screening for on-person objects and are often
accompanied by X-Ray machines for scanning luggage and other containers. Hand-
held metal detectors are also used, but require very close proximity to the subject
to work properly, making leaving the operator in a potentially vulnerable position.
Even given a metal detector’s simplicity, this method can miss smaller metallic
objects such as needles and does not detect non-metallic weapons, such as blow-
darts and ceramic knives. Metal detectors also require co-operation on behalf of the
individual being screened, so will not work very well in an adversarial environment.

2.1.2 X-Ray and Computed Tomography

X-Ray machines are also a relatively ubiquitous way of imaging objects to peer inside
them without invasive methods. They are used in both the medical sphere and
in security scenarios when scanning containers for dangerous or forbidden objects.
For example, they are used in airports to screen carry-on bags for any hazardous
objects [13].
A more modern approach to this is Computed Tomography (CT), which uses the
same X-Ray wavelength to ‘see through’ solid material, but uses higher-energy waves
for better penetrative properties. A CT machine takes scans from multiple angles
to provide a 3D image of the object being imaged. This technology is also used in
both the medical sphere and in high-security areas like airports to screen checked-in
luggage and, increasingly, carry-on luggage [14, 15].
These systems work quickly and do not damage the contents of the container, in-
cluding sensitive objects like film, due to the low intensity of radiation used during
the scans. The setups are however not very portable, require large amounts of en-
ergy to run and again assume the explicit cooperation of the containers’ owners to
perform the scans. The scanning machines need the container to be small enough
to fit within the scanner, limiting their usage when it comes to larger and heavier
crates.

2.1.3 Terahertz Spectroscopy

Terahertz Spectroscopy uses 1011 to 1013 Hz light to perform object imaging. The
idea behind THz spectroscopy is that different materials have very distinct absorp-
tion and reflection properties when exposed to different wavelengths of THz waves.
The approach relies on material surface properties, meaning that THz spectroscopy
is not limited to metallic objects, being able to also distinguish between different
organic and inorganic materials [16].
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THz spectroscopy is considered a reliable and tested imaging method, capable of
detecting a large number of different objects including traditional metallic weapons,
as well as non-metallic hazards such as bio-hazards and explosives [17, 18]. Unfor-
tunately, THz spectroscopy instruments are expensive and not widely-used, mainly
due to lack of commercial scaling and predominantly scientific use [16]. The al-
ternative is often considered to be the previous-introduced Computed Tomography,
which is more than sufficient for most security scenarios, limiting the development
of THz spectroscopy.

2.1.4 Infrared Cameras

Infrared (IR) cameras work in the infrared (700 − 1400 nm) spectrum, rather than
the usual visible-light (380−750 nm) spectrum which human eyes are perceptive to.
All objects have a surface temperature above 0 K, and hence will emit heat radiation,
which is detectable in the IR spectrum. Metallic objects usually differ in temperature
to the surrounding biological matter and its derivatives due to metal’s lower specific
heat capacity. This makes them stand out against an organic background when
being viewed through an IR camera.
It has been shown that IR cameras can successfully be used to both detect and
classify concealed weapons at a distance, usually when carried on-person. However,
the approach relies on there being a temperature difference between the weapon and
the surrounding environment, and so works well for detecting weapons concealed on-
person, but less-so for weapons hidden in luggage or other containers [19, 20].

2.1.5 mmWave Radar

mmWave radar is used in most airports in full-body scanners as an additional se-
curity check after a cruder metal detector sweep. The mmWave radar waves are
bounced off the human body to give an outline of it and any metallic or solid objects
being concealed on-person. These often feature a “Automatic Threat Recognition
and Detection” system whereby the system will highlight possible threat areas. A
security officer then determines whether a further physical search is required. The
sophistication of these scanners vary from giving simple ‘threat areas’ to classifying
the detected objects [3].
The full-body scanner is a great example of commercialised and wide-spread use of
mmWave radar for weapon detection in static form, but it is often lacking in classi-
fication functionality and requires the co-operation of the individual being scanned
to work properly – scanning process requires the screened individual to be still for
a couple of seconds.

12
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Figure 2.1: A single chirp, with start
frequency fc, signal bandwidth B, and
signal duration Tc.
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Figure 2.2: A single transmitted (TX)
chirp and its corresponding received
(RX) chirp, with a time delay τ and in-
termediate frequency Sτ .

2.2 mmWave FMCW Radar

As introduced in Chapter 1, the imaging technology used in this project will be
mmWave radar.
Millimetre wave (mmWave) as a form of radar technology uses electromagnetic waves
with a wavelength in the millimetre range (i.e. in the frequency range 30−300 GHz).
This is a ‘short’ wavelength, which is advantageous as the required antennas to trans-
mit and receive signals of this frequency are relatively small. The short wavelength
also allow for higher accuracy in terms of range resolution. These radar systems
send out signals that objects then reflect with varying absorption coefficients.
Frequency-modulated continuous wave (FMCW) is a special class of mmWave tech-
nology that differs from more traditional pulsed-radar systems. FMCW transmits a
continuous frequency-modulated signal to measure both range, angle, and velocity
of objects [21].
The rest of the section will cover the theory behind mmWave FMCW radar, followed
by an overview of the available commercial sensors. Finally, the radar sensor’s
outputs will be discussed in the context of their applicability to this project.

2.2.1 Theory

FMCW radar uses a special class of signals where frequency increases linearly with
time. This class of signals is called a chirp. These signals can be used to both
measure distance and relative angle to an object.
A chirp, as shown in Figure 2.1, can be characterised by three main variables: a
start frequency fc, signal bandwidth B, and signal duration Tc. Common value for
a Texas Instrument FMCW radar would be fc = 77 GHz, B = 4 GHz, Tc = 40 µs.
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TX RX{0,1,2}

t / s
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Figure 2.3: A single TX chirp with multiple RX chirps received from different ob-
jects, with respective intermediate frequencies Sτ{0,1,2} .

Distance Measurement

A FMCW radar continuously transmits chirps and captures the signals reflected by
various objects along its path. Figure 2.2 shows such a received signal, with a time
delay τ between the TX and RX chirps. τ is a function of distance d to the object
reflecting the signal:

τ = 2d

c
(2.1)

where c is the speed of light. By re-arranging the equation to d = τc/2, we are able
to calculate the distance to the reflecting object.
Consider Figure 2.3, where a single TX chirp results in multiple RX chirps that
are reflected off different objects. The figure also shows the resulting intermediate
frequency (IF) tones, which are proportional in frequency to the signal time delay
τ{0,1,2,} and hence to the distance to the objects. The received IF signal (depicted in
the bottom half of Figure 2.3) consists of these multiple tones (denoted in various
colours). One can separate out these tones from the combined signal via a Fourier
transform. The resulting frequency spectrum will have have peaks corresponding to
the presence of an object at a specific distance.
An important factor to consider is the resolution with which we can perform these
multi-object range measurements. The range resolution of a radar system is the
minimum distance between two objects at which they are still distinguishable as
separate objects. According to Fourier transform theory (FTT), the resolution is
proportional to the length of the IF signal (Sτ in Figure 2.2). This length is in turn
proportional to the signal bandwidth B.
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se
ns
or

TX RX

d

d+Δd

θ

l

Figure 2.4: Angle-of-arrival estimation with 2 RX antennas.

FTT further states that an observation window of length T can distinguish frequency
components separated by at least 1

T
Hz. Hence, one can resolve two IF tones as long

as their ∆f = |f1 − f2| satisfies:

∆f = 1
Tc

(2.2)

where Tc is the signal duration/observation interval as shown in Figure 2.1. Given
the definition ∆f = 2S∆d/c, where S = B/Tc is the slope of the chirp and ∆d is
the distance separation of the two objects, we can show that:

∆d >
c

2STc

= c

2B
(2.3)

Hence, we have shown that the range resolution dres depends solely on the bandwidth
B of the chirp:

dres = c

2B
(2.4)

Angle Estimation

An array of RX antennas can be used to estimate the angle of arrival θ of the
reflected signal. This works on the principle that the difference in distance ∆d
between the reflecting object and the receiving antennas leads to a phase change in
the received signal. Namely, the FFT peak of the received signals will have a phase
offset. Figure 2.4 shows this with a two-RX-antenna array.
The phase change ∆Φ can be derived mathematically, under the assumption that the
object is sufficiently far enough that ∆d = l sin(θ) where l is the distance between the
antennas (i.e. one can assume that the received signals are parallel to one another):

∆Φ = 2π∆d

λ
(2.5)

where λ is the wavelength of the carrier signal.
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RX antennas TX antennas

λ/2

λ

Figure 2.5: Photograph of the IWR1443BOOST’s PCB, showing the physical TX
and RX antennas in a 2D arrangement, allowing for 3D angle estimation. Photo
provided courtesy of Texas Instruments [23].

The angle of arrival θ can hence be shown to be:

θ = sin−1
(

λ∆Φ
2πl

)
(2.6)

Angle measurement ambiguity is introduced if ∆Φ > π. Hence, the maximum
unambiguous angular field of view can be shown to be:

∆Φmax = 2π∆dmax

λ
= 2πl sin(θmax)

λ
= π (2.7)

Hence the angular field of view θmax is:

θmax = sin−1
(

λ

2l

)
(2.8)

Which implies that the angular field of view is maximised to be θmax = ±π when
the spacing between the antennas is l = λ/2.
The angle estimation can be performed in 3D, given a 2D antenna arrangement. Fig-
ure 2.5 shows a photograph of such a 2D arrangement present on the IWR1443BOOST
evaluation board. The spacing between the horizontal antennas is lhor = λ/2 and
lvert ≈ 2λ for the vertical antennas. This arrangement gives a vertical field of view
of roughly ±15◦ [22].
The theory presented in this section has been adapted from Iovescu and Rao [21].
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2.2.2 Commercial Sensors

There are two main companies that produce mmWave sensors: Infineon and Texas
Instruments (TI). The products are distinguished by their operational frequencies,
usually 24 GHz, 60 GHz, or 77 GHz, and chirp bandwidth. Texas Instruments pro-
vides better documentation for their sensors and they are more readily available to
consumers. Hence, only TI sensors will be considered from here on.
In terms of sensors for industrial (rather than automotive use), Texas Instruments
produces two sensors in the 60 − 64 GHz range: IWR6443 and IWR6843; as well as
three in the 77−81 GHz range: IWR1443, IWR1642, IWR1843. All 5 sensors have a
bandwidth of 4 GHz. We have shown in Equation (2.4) that the imaging resolution
solely depends on the available chirp bandwidth B. Hence, a chirp bandwidth of
4 GHz translates to a range resolution of roughly 3.75 cm.
Some of the sensors, such as the IWR1642 and IWR1843, have on-chip DSP. An in-
tegrated DSP module allows for implementation of high-level algorithms such as ob-
ject tracking and simple classification on-chip, but significantly increases the power
draw. The IWR1443 sensor lacks a DSP core but still provides high-accuracy radar
measurements.

2.2.3 Sensor Outputs

The TI mmWave sensors feature a variety of different outputs. These range from
the raw FFT radar signal, to a Range-Azimuth heatmap that combines angle and
distance estimation as covered above.
There are a number of other outputs that are not relevant to this project, such as
the Range-Doppler heatmap that tracks object speeds, and a 3D object detection
output that attempts to cluster individual object heatmaps into a single point with
a 3D position and velocity vector attached.
The evaluation module that will be used for this project is the IWR1443BOOST
board. This dictates the specifics of the background material presented below. The
justification for this choice will be discussed in Section 3.3.1.

Raw FTT Signal

The IWR1443BOOST evaluation module used does not support outputting its raw
data via the default UART-to-USB connection, owing to a 1 Mbit s−1 limit on data
transmission. This limits output data to pre-processed outputs, including the radar
heatmap that will be discussed in the following sub-section.
The sensor’s raw data can be accessed via its LVDS interface using an additional
board such as the DCA1000EVM. Future extensions of this project would likely
focus on using the full raw data to improve accuracy and performance.
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Figure 2.6: An example visualisation of a Range-Azimuth heatmap obtained from a
IWR1443BOOST evaluation board, capturing data between 0.18 m and 0.53 m away
from the sensor.

Radar Heatmap

There are two main heatmap types that are accessible via the on-board UART con-
nection: the Range-Doppler and the Range-Azimuth heatmaps. Since this project
is focused on scanning static objects, the Doppler coordinates of the radar scans
are irrelevant. Hence, when referring to the radar heatmap from here on, I will
implicitly refer to the Range-Azimuth heatmap.
The heatmap is a radar cube matrix with a zero Doppler index (i.e. only static
objects), across all range bins and all antennas. It shows the intensity of the reflected
signal at each physical location. It can be visualised as a 2D semi-circular sweep,
with the intensities averaged across the elevation dimension [24]. An example of
such a heatmap is presented in Figure 2.6. The heatmap essentially combines angle
and distance estimation, as described in Section 2.2.1, into a single output.
Due to the UART-to-USB connection’s bandwidth limitations, the radar heatmap
output requires dropping the sensor update rate to 4 frames-per-second.
The raw data is received as a 2D FFT array in the range direction, with shape
numRangeBins × numVirtualAntAzim. The numRangeBins is the total number of
range bins, set by the configuration of the radar. A range bin’s index can be di-
rectly converted into an actual range by multiplying it by a set factor also de-
termined by the radar’s configuration. For example, numRangeBins = 256 with
rangeIdxToMeters = 0.0353 implies that the data at range bin 10 corresponds to
a physical location roughly 0.35 m away from the sensor.
numVirtualAntAzim corresponds to the number of “azimuth” virtual antennas. This
is usually (numTxAnt−1)∗numRxAnt where numTxAnt is the number of transmission
antennas and numRxAnt – the number of receiving antennas. One of the transmis-
sion atennas is used for elevation estimation and hence does not count towards the
azimuth virtual antennas [25].
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2.3 Visual Inertial Odometry (VIO)

As was described in Section 1.3, a position and orientation tracking method is re-
quired to estimate the physical pose of the radar sensor. This is necessary to be
able to combine an array of individual radar heatmaps into a single 3D radar scan.
The method of choice was Visual Inertial Odometry. This choice is justified in Sec-
tion 3.3.2.
Visual Inertial Odometry (VIO) is a method of enhancing the accuracy of visual
odometry (VO) using an inertial measurement unit (IMU). In turn, VO is the process
of determining the 3D position and orientation of an object by virtue of analysing
its associated camera images.
VO often works via feature-based methods. An image’s feature points, i.e. distin-
guishing features such as points of high contrast, sudden colour change, or distinct
patterns, would be extracted and tracked on a frame-by-frame basis [26]. One
can also apply a “direct” method which track pixel intensity values inter-frame in-
stead [27].
An IMU sensor on its own can be used to estimate position and orientation. The
orientation is often relatively accurate if using a dedicate gyroscope, but the po-
sition estimation often suffers from high error rates introduced during the double
integral of converting between acceleration (provided by an accelerometer) and dis-
placement [28].
Combining VO and IMU data allows one to minimise the error rates, providing
incredibly accurate tracking capabilities [29]. These technologies are actively being
used in practice and are accessibly via a simple API call to either Apple’s ARKit or
Google’s ARCore [30]. These APIs apply the feature extraction methods described
above to the phone’s camera output and combine the position and orientation data
estimated with the data read from the phone’s IMU sensors – usually a gyroscope
and accelerometer. This provides accurate pose estimates, as will be subsequently
verified in Section 6.1.1.

2.4 Deep Learning

The 3D radar scans obtained via the method proposed in Section 1.3 need to be
classified to determine the nature of the concealed object. A deep learning approach
via 3DCNNs is used for this project due to recent developments in lightweight and
efficient networks [31]. A further discussion on the choice of classification algorithm
is discussed in Section 3.3.3.
The rest of this section is going to give a gentle introduction to neural networks,
starting with the theory behind generic supervised learning. Basic neural networks
are then going to be discussed, followed by an introduction to convolutional neural
networks as a means of processing multi-dimensional data. Finally, the problem of
overfitting to training data, as a result of the combination of complex models and
small datasets, will be discussed and a few potential solutions outlined.
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2.4.1 Supervised Learning

Supervised learning can be defined as the process of learning some function f : x → y
that takes an input x and assigns it a class label y:

f(x) = y (2.9)

x ∈ RN is usually taken to be some real-valued N-dimensional vector, and y ∈ Z is
an integer in some range 0 ≤ y ≤ M which maps onto the desired class label [32].
Binary classification is a special subset of supervised learning where M = 2.
A training dataset DT , made up of input-output pairs (x, y) ∈ DT , is used to learn
f . The learning process consists of repeatedly sampling from DT and comparing
the resulting predicted output f(x) = ŷ to the true label y. However, rather than
directly predicting ŷ, it is often more informative to learn a function g that outputs
the likelihood px

y′ of an input x belonging to a class y′:

g(x) = (px
0 , px

1 , . . . , px
M−1) = ŷ (2.10)

The classification function f is then taken to be:

f(x) = argmax(g(x)) = argmax(ŷ) = ŷ (2.11)

The comparison between the predicted ŷ and true y is performed numerically via a
loss function, whereby the model’s training goal would be to minimise this resulting
loss. In the case of an M -class (multiclass) classification problem, cross entropy loss
is often used:

L(ŷ, y) = −
M∑

m=0
1m=y log(ŷm) = −

M∑
m=0

1m=y log(px
m) (2.12)

where 1m=y is an indicator function that returns 1 if m = y and 0 otherwise [33].

2.4.2 Neural Networks

Neural networks (NNs) are common models used for handling classification tasks.
A simple, single-layer NN is also often called a perceptron. A perceptron fp has
two main variables: a weight vector w and a scalar bias term b [34]. Perceptrons
can be chained together to form multi-layer perceptrons (MLPs) to improve their
classification abilities. Binary classification is then performed on some vector input
x as follows:

fp(x) = 1w·x+b>0 (2.13)

where w · x is the dot product ∑n
i=0 wixi, given |w| = |x| = n.

Alternatively, rather than using a step-function such as the one shown in Equa-
tion (2.13), one can use a generic activation function gact:

fp(x) = gact(w · x + b) (2.14)
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Common activation functions include sigmoid:

gsigmoid
act (z) = 1

1 − ez
(2.15)

tanh:

gtanh
act (z) = ez − e−z

ez + e−z
(2.16)

and Rectified Linear Unit (ReLU) [35]:

gReLU
act (z) = z+ = max(0, z) (2.17)

Such activation functions are essential as they allow multi-layer NNs to solve non-
trivial problems by introducing non-linearities into the network [36].

2.4.3 Training

As mentioned in the previous subsection, each node/perceptron has two main vari-
ables associated with it: a weight vector w and a scalar bias term b. These variables
need to be tuned to improve the classification ability of the neural network, i.e. to
minimise the previously-defined loss.
This is nearly ubiquitously done via back-propagation. This involves computing the
gradient of the loss with respect to the weights and biases of the neural network for
a single input-output pair (x, y) ∈ DT . The main innovation of this methods stems
from its efficiency: the gradient of the loss function with respect to each weight is
computed via the chain rule one layer at a time. This process starts from the last
output layer of the NN and iterates backward to avoid unnecessarily calculating the
intermediate terms in the chain rule. This efficiency allows the use of gradient-based
methods for training deep (multi-layer) neural networks [37].
One of the most commonly-used gradient-based methods is Stochastic Gradient
Descent (SGD). A standard gradient descent method would optimise the neural
network’s weights w according to the following formula:

wt+1 = wt − η∇Q(w) = wt − η

n

n∑
i=1

∇Qi(w) (2.18)

where n is the size of the training dataset, ν is the learning rate, Q(w) is the empirical
risk, and Qi(w) is the loss for sample xi.
While evaluating the whole sum is feasible for smaller datasets, in practice it is often
too computationally expensive due to large training dataset size and non-trivial
gradient calculation. Hence, SGD approximates the true ∇Q(w) as the gradient
∇Qi(w) of a single sample xi:

wt+1 = wt − η∇Qi(w) (2.19)
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The training dataset would be randomly shuffled and the simple-sample gradient
step shown in Equation (2.19) would be performed iteratively for each data sample.
In practice, mini-batch SGD is more common. Here, the true ∇Q(w) is approxi-
mated as:

∇Q(w) ≈
m∑

i=1
∇Qi(w) (2.20)

where m < n is the mini-batch size. m is often taken to be a power of 2 to improve
data retrieval efficiency [38].

2.4.4 Convolutional Neural Networks

While neural networks in the form discussed above work well for one-dimensional
data, there is a lot of value to being able to work with two-dimensional data such
as images. Traditionally, MLPs were used for classification of 2D images, but due
to the curse of dimensionality their application was limited.
Convolutional neural networks (CNNs) employ N -dimensional kernels to efficiently
analyse N -dimensional data. While CNNs are also applicable to 3D input data
(which is important given that this project needs to classify 3D radar scans), for
the sake of simplifying the mathematics let us consider the N = 2 case. Kernels
are usually small (3 × 3 or 5 × 5) learnable matrices. The size of the kernel used
dictates the size of the image feature it can detect. The learned kernels are able
perform feature detection with translation invariance, which makes CNNs incredibly
powerful at performing image classification.
During the forward pass of the CNN, the kernel k is convolved with the input to
produce an activation map g:

g(x, y) = k ⋆ f(x, y) =
w−1∑
dx=0

h−1∑
dy=0

kdx,dyf(x + dx, y + dy) (2.21)

where f(x, y) is the pixel value at the respective co-ordinates of the input image,
g(x, y) is the resulting activation map value for those co-ordinates, and w, h are the
dimensions of the kernel k.
The size of the resulting activation map depends on the length of the kernel’s stride.
This dictates by how much the kernel window moves over the input image at each
step. A larger stride is often used for computational efficiency or to downsample.
A stride of > 1 is often preferred for larger kernels as they capture signification
portions of the underlying image [39].
A lot of the base CNN models used in this project have large strides as they are
designed to deal with high-resolution images. Since the 3D radar scans produced are
just 16 × 16 × 16, a large stride and kernel size would lead to very coarse activation
maps, which would negatively affect classification performance. As such, as will be
discussed in Section 5.3.4, the strides and kernel sizes of the base models used were
adjusted to suit the smaller data dimensions.
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2.4.5 Overfitting

The models that will be used in this project are designed to be trained on large
datasets with millions of examples to hone their classification abilities. However, in
the context of this project, it is unfeasible to collect and process a large dataset due
to time constraints. As such, the models become susceptible to overfitting.
Overfitting is refers to the phenomenon where a model fits the training data almost
exactly, to a point of deteriorating performance on unseen data. An overfitted
model’s performance generalises poorly to unseen data. This usually occurs when
a model is too powerful, in terms of complexity or number of learnable parameters,
compared to the dataset that is being fitted to [40].
There are a number of ways to prevent overfitting. A simple way of doing so is
by increasing the amount of training data. It was not possible to collect enough
unique data for this project due to time constraints, but the collected data was
augmented to generate more of it without significant loss of diversity. This process is
described in Section 4.3. However, this approach alone is still not sufficient to prevent
overfitting due to the limited underlying data. Hence, two additional approaches
can be taken:

1. Early stopping – the model’s performance is periodically evaluated on a val-
idation dataset entirely disjoint from the training set. Models with the best
validation set performance are saved and training stopped when the validation
accuracy begins deteriorating. This stops training before the model begins to
memorise (rather than learn) the training set.

2. Dropout – during training, a Dropout layer can be used to randomly ignore
(“drop out”) the output of the preceding layer. This regularisation technique
is effective at reducing overfitting in NNs [41].

As will be discussed in Section 5.3.4, these two approaches were successful in im-
proving model generalisation.
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Chapter 3

Scanner Design

This chapter discusses the various design decisions that went into the the proposed
method described in Section 1.3 and into designing the prototype radar scanner.
The chapter starts with Section 3.1 defining the problem statement that this project
aims to tackle. The scope of the project is then derived from this problem statement
in Section 3.2, followed by a requirements analysis of the project in Section 3.3.
The requirements analysis weights up the pros and cons of the design decisions
in the face of the problem statement. Specifically, the choice of mmWave sensor,
position tracking method, and classification method are discussed. The chapter then
concludes with Section 3.4 giving an overview of the final design.

3.1 Problem Statement

Existing methods of weapon detection, as described in Chapter 2, often rely on
stationary and difficult-to-transport equipment and require the co-operation of the
party being imaged. Hence, there is a niche to be filled by using a portable device.
A portable device would be flexible in the way it can be used – it could can objects
of varying shapes and sizes, which would be an improvement over imaging methods
such as CT scans and X-Ray machines as they have a size limit dictated by the
physical dimensions of the scanner.
Existing methods of weapon detection also often have significant power consumption
requirements, needing to rely on a stable power supply. Hence, the scanner would
benefit from a low-power radar module. I will define low-power to mean a power
draw of below 5 V/3 A. This is the Quick Charge 2.0 standard and can be met by
many portable USB power banks. The standard capacity for such a power bank is
roughly 10 − 20 A h, which would be able to power such a device for at least 3 − 6
hours.
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Setting a low-cost requirement means that the method should use as many off-
the-shelf components as possible. As discussed later, this meant that the final
design uses an everyday mid-range Android phone for positioning purposes. The
low-cost nature of the device increases its availability, which especially important
for the motivating example given in Section 1.1, i.e. in wildlife preservation and
anti-poaching programmes that are usually under- or poorly funded [9].

3.2 Project Scope

The most important challenge that this project needs to solve is to be able to detect
and classify concealed metallic objects. To demonstrate these classification abilities,
three household objects were selected. Namely, these were chosen to be: a phone,
a knife, and a screwdriver. The objects are sufficiently different enough and pose
an interest for detection: a knife and a screwdriver can be used as weapons, and a
phone, if found under suspicious circumstances, can be searched to provide further
context of the threat.
These objects have similar size measurements in certain dimensions – they are all
around the same thickness for example; which means that the object scanning needs
to be done in 3D to account for the full shape of the objects. While radar sensors
perform a basic depth map, most are usually limited by the elevation angle range and
the penetrative abilities of the radar. This means that objects need to be scanned
from multiple points-of-view to obtain a complete picture. This, in turn, implies
that one needs to know the position and orientation of the radar sensor, relative to
the object being scanned.
This gives rise to three main design decisions: the choice of mmWave sensor, the
way of performing position tracking of the sensor, and how to perform object clas-
sification.

3.3 Requirements Analysis

The design decisions presented in Section 3.2 can be analysed via the requirements
imposed by the Problem Statement: portability, power, and cost. These require-
ments guide the design decisions.

3.3.1 mmWave Sensor

As mentioned in Chapter 2, Texas Instruments produces five sensors for industrial
use, of varying operating frequencies: IWR6443, IWR6843, IWR1443, IWR1642,
IWR1843. A single sensor needs to be selected to construct the prototype. These
five sensors will be scrutinised in terms of scan resolution, power requirements, price,
and availability.
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Scan Resolution

The scan resolution of the sensor needs to be high enough to tell objects apart when
they are imaged with this resolution. The three selected objects are all roughly the
same thickness, but vary in size in other dimensions: a phone is roughly as long as
a household screwdriver but is significantly wider; while a screwdriver and a knife
are roughly the same width but have different lengths.
As such, the imaging resolution needs to be at least equal to the minimum difference
in dimensionality between these objects. In the case of the objects used for the
experiments, detailed in Section 4.2.1, this was found to be 4.5 cm. This constituted
the difference between the length of the screwdriver and knife, as shown in Figure 3.1.
The second largest difference was between the width of the phone and knife at 5.4 cm.
Hence, the scan resolution needs to be at least 4.5 cm.

Figure 3.1: Size comparison of the objects to be classified.

As discussed in Section 2.2, TI produces sensors that operate in both the 60−64 GHz
and 77−81 GHz frequency ranges. Equation (2.4) shows that the imaging resolution
depends exclusively on the available chirp bandwidth. All the sensors have the same
chirp bandwidth of 4 GHz which translates to a range resolution of roughly 3.75 cm.
The aforementioned scan resolution requirement of 4.5 cm requires only a bandwidth
of 3.33 GHz. Hence, all the TI sensors have a sufficiently large bandwidth to meet the
scan resolution requirement. The resolution is slightly lower in practice (∼ 4 cm),
as discussed in Section 4.1.1, but it still sufficiently high to meet the resolution
requirement.
The sensors differ in operating frequency, which is relevant only when considering
the regulations surrounding radar usage. These regulations differ depending on the
country and application (e.g. automotive vs not). However, since the project is
a prototype, it does not need to meet these regulations. As the resolution across
the selection is the same, the choice lies with the most available and lowest power-
consuming sensor.
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Power, Price, and Availability

All the TI evaluation boards use a 5 V/2.5 A power supply, which meets the low-
power requirements as set out in Section 3.1. However, the IWR1642, IWR1843, and
IWR6843 sensors have an on-chip digital signal processor (DSP) which significantly
increases the power draw [42]. The method utilises the Range-Azimuth heatmap
output of the sensor, making the DSP unnecessary for this project.
This leaves just the IWR1443 and the IWR6443 sensors under consideration. The
IWR6443 sensor does not have an evaluation board available, which greatly increase
the difficulty and scope of this project as one would have to design a board to make
the chip usable. The IWR1443 is usable out-of-the-box via the IWR1443BOOST
evaluation board and is hence the sensor of choice in this case.
The IWR1443BOOST evaluation board also retails at 358.80 USD, making it rel-
atively affordable, especially compared to higher-end radar modules such as the
MMWCAS-RF-EVM which retails at 1, 318.80 USD.

Final Decision

The final decision was made to use the IWR1443 sensor via the IWR1443BOOST
evaluation board, for the reasons discussed above. This board was purchased via
University of Oxford’s Computer Science Department.

3.3.2 Position Tracking

To combine multiple 2D radar heatmaps into a single 3D image, one needs to know
the position and orientation of the radar at the time each 2D heatmap was recorded.
There are multiple ways of doing so:

• Wi-Fi-based indoor positioning systems work by time-of-flight multilateration
from multiple Wi-Fi hotspots. The distance estimation between the device
and a hotspot, needed for positioning, is based on signal strength, which varies
heavily depending on environment conditions, obstacles, and even device ori-
entation. These approaches often need to rely on neural networks to achieve
reasonable accuracies, though more traditional approaches can give room-level
granularity reliably.
This approach is not ideal as it does not give the device’s orientation, and
even the best methods have an error rate of around 0.22 m in an ideal envi-
ronment. The setup also relies on setting up hotspots around the tracking
location, which makes this approach unrealistic for use outside of a controlled
space, such as an office [43]. The Bat System, described by Ward et al. [44],
takes a similar approach but uses a combination of MHz radio for clock syn-
chronisation purposes and ultrasonic pulses for time-of-flight estimation. It
too is only usable in a controlled indoor space.
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• Photogrammetry-based approaches rely on constructing a model of the track-
ing environment based on a large number of images of the scene. This is
labour-intensive to construct, but the end result is a 3D model of the scene
that can be used in tandem with a single photo (of the scene) to accurately
predict both the 3D position and orientation of the camera when the photo
was taken.
Ghofrani et al. [45] propose such a method that achieves remarkable accuracy
in both position and orientation estimation: the largest error rate for position-
ing was a mere 3.4 mm, and 0.0086◦ for orientation. This approach however
is not very practical for our use-case as it relies on the pre-built environment
model.

• Visual-Inertial odometry (VIO), as described in Section 2.3, has been used
for various Augmented Reality (AR) and indoor tracking purposes. The ap-
proach is able to produce very accurate and stable results, with exact error-
rates differing significantly depending on the device and specific method used.
VIO can be performed is entirely on-device, without external installations or
beacons [46]. VIO is also used in VR headsets such as the Oculus Quest
for position and orientation tracking, however using a multi-camera setup to
provide millimetre-level tracking accuracy. The error-rates for the constructed
prototype were experimentally determined. These results are discussed in Sec-
tion 6.1.1.

The first two approaches rely on external equipment to provide the positioning data,
which makes them impractical for a portable setup. Hence, VIO is selected to be
the position tracking method of choice.
VIO data can be obtained both via a smartphone using simple API calls on both
Android (via Google’s ARCore [30]) and on iOS (via Apple’s ARKit); or on a custom-
built device featuring an RGB camera(s) and IMU sensor. While the latter may be
more cost-efficient in the long-run and more accurate, using a smartphone is easier
for prototyping and they have been getting progressively cheaper and are widely
available [47]. This makes VIO accessible and easily the most favourable approach,
owing for both its high accuracy and ease of use. The Android ecosystem and its
respective ARCore [30] library was the tracking solution of choice, due to ease of
development and cheaper average prices compared to iPhones.

3.3.3 Classification

Classifying the obtained 3D radar images can be done both via a classical data
science approach through feature selection or via an ML model. A feature-selection
approach would involve manually determining which features of the data would be
most informative to making the classification decisions. Once these features are
selected, the model would be trained to determine the exact threshold values of
these features to guide the classification process.
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For example, one could select the dimensions of voxels with an above-mean intensity
value as a feature of the image, i.e. filter out the data points with an intensity value
below the mean and calculate the 3D shape of the resulting object (clustering if
needs be). Alternatively, a feature could be the maximum intensity value in the
image. This feature-based approach requires hand-crafting these features, which
may reduce the generalisability properties of the classification model. It is also
more labour intensive of an approach.
The alternative is to use neural networks, and specifically the CNN models de-
scribed in Section 2.4.4. An ML approach is more hands-off and generally gives
better generalisation properties. There have also been recent advances in efficient
3D classification networks which significantly speed up training and inference [31].
The 3D nature of the data used in this project means it is unfeasible to manually de-
rive useful features. For example, the shape feature described above is not rotation-
invariant, which reduces its usability outside of a controller scanning environment.
Resource-efficient 3D CNNs seem like the most promising direction to go down in
terms of classification, due to their accurate performance and lightweight nature.
Classification performance will be evaluated on different model architectures.

3.4 Design Overview

Figure 3.2 gives a diagrammatic overview of the final prototype scanner design. The
idea behind the project is to able to construct a 3D radar scan of a solid metal-
lic object by combining multiple 2D radar scans taken from known positions and
orientations. The 2D radar scans are obtained via the mmWave IWR1443BOOST
evaluation board’s heatmap read-out. The 3D position and orientation of the eval-
uation board is tracked using Visual-Inertial Odometry (VIO) data collected on an
Android phone using Google’s ARCore library [30]. These 3D radar scans roughly
correspond to the shape of the object, with the intensities at each co-ordinate indi-
cating the reflectance properties of the surface at that co-ordinate. 3DCNN neural
network models are trained to classify the obtained 3D radar scans into predeter-
mined object classes: phone, knife, and screwdriver.
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Figure 3.2: Diagrammatic overview of the various components of the prototype scan-
ner. (1) is a solid box used to obscure an object (2) that is meant to be scanned
and classified. Figures 4.8 and 4.9 show real-world photo examples of (1,2). (3)
and (4) together form the contraption used for producing 3D radar scans, with Fig-
ure 5.2 depicting a real-world photo of this device. (3) is an Android phone that is
used for capturing Visual-Inertial Odometry (VIO) data. (4) is a mmWave radar
module, namely, the IWR1443BOOST evaluation board. (5) depicts in abstract
form the process of scanning an object, described in detail in Section 4.2.2. Finally,
(6) is a laptop or PC that receives data from the mmWave radar module via a USB
cable and the VIO data wireless from the Android phone. This PC is also respon-
sible for running the data post-processing and machine learning pipeline, described
in Section 4.3.
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Chapter 4

Methodology

This chapter describes the various algorithms used in the method proposed in Sec-
tion 1.3. The chapter also describes the experimental procedures used to test the
capabilities of the produced prototype.
There are three sections to this chapter. Section 4.1 gives the detailed methodol-
ogy behind producing 3D radar scans of concealed objects. Section 4.2 details the
approach taken to conducting the data-collection experiments. Section 4.3 details
the data post-processing procedures as well as the data-centric machine learning
techniques employed to classify the obtained 3D radar scans.

4.1 3D Radar Scan

This section describes the procedure behind obtaining 3D radar scans of concealed
objects. The scanning method relies on a IWR1443BOOST evaluation board for
obtaining the radar measurements, and an Android phone for the Visual-Inertial
Odometry (VIO).

4.1.1 Reading Data

The first step in producing a radar scan is to be able to interact with and read data
from the evaluation board. Python was used as the main programming language
due to the wide availability of data processing libraries.
The board connects to a computer using a UART-to-USB connection via a micro-
USB port on the sensor. The single USB connection exposes two main serial ports:
the data port and command-line interface (CLI). These have different software paths
and baud rates. Python’s serial library was used to communicate with the board.
After opening the two serial ports, the board’s configuration file needs to be read-in
and sent to the device via the CLI port. The configuration file is also parsed into
a usable dictionary format to allow for access to the configuration variables to ease
data decoding.
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The file specifies the operating frequency of the radar, the range resolution, max-
imum unambiguous range, the output data types, and other settings. The file is
generated using TI’s online mmWave Demo Visualiser1 tool. Deviations from the
default configuration of the radar were as follows:

• All 3 TX antennas (as opposed to the default 2) were enabled to allow for
elevation estimation, as described in Section 2.2.1.

• Range resolution was maximised by being set to its lowest value of 0.04 m.

• The Range-Azimuth heatmap output was enabled, and all other outputs dis-
abled.

• The output rate of the sensor was dropped to 4 frames-per-second due to the
heatmap’s large data size and the data port’s baud rate limitation.

Enabling the heatmap output requires the sensor to be reset to apply these changes,
and then have the settings resent. This reset needs to be done by physically de-
pressing an on-board button, so a user prompt was written in the main program,
described in Section 5.3, to ensure this is done.
Starting and stopping the radar scan was done by sending a respective sensorStart
or sensorStop message on the CLI port. Once started, data was being outputted
via the data port. This port was periodically read from and a data buffer was built
up. Within this buffer, the start of a packet could be identified by looking for a
magic word, which is a specific 8-element array of uint8s.
Once the start of a packet was identified, its expected packet length was decoded to
ensure that the whole packet could be processed in one go. Otherwise, the program
would wait for the remainder of the packet to be read-in before continuing. Once
the whole packet was contained within the data buffer, its frame header was read.
This contains the protocol version number, the expected packet length, the sensor
type, as well a frame number and a relative timestamp. It also contains the number
of TLVs (type-length-value) that the packet contains. The types of TLVs included in
the packet are set by the configuration file and include the range-azimuth heatmap
output. Other unused TLV types include detected points, range profile, noise floor
profile, range-doppler heatmap, and performance and temperature statistics.
Each TLV in turn has its own header which identifies its type and length. The TLV
type determines which parsing function to use. The parsing function takes the data
portion of the TLV packet as well as the sensor configuration file as input. I chose
to only decode the range-azimuth heatmap TLV as it was the only relevant one for
the project.

1https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/2.1.0/
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(a) An example of a raw radar heatmap. (b) (a)’s radar heatmap with linear in-
terpolation.

Figure 4.1: An example radar heatmap obtained from the evaluation board.

Figure 4.2: Two perspectives of Figure 4.1’s radar heatmap presented in 3D space,
given the evaluation board’s ±15 deg elevation angle of detection. The 2D heatmap
contains the average intensities within this elevation range, so the heatmap data is
simply duplicated while being pivoted around the origin to obtain the 3D scan.

4.1.2 2D Radar Heatmap

As mentioned in Section 2.2.3, the Range-Azimuth heatmap in raw format is a 2D
FFT array in the range direction, with shape numRangeBins×numVirtualAntAzim,
where numRangeBins is the total number of range bins, and numVirtualAntAzim
is the number of “azimuth” virtual antennas used, both set by the configuration.
The complex numbers are presented as pairs of real and imaginary shorts (int16).
Technical references by Texas Instruments [25] and the sensor’s documentation were
used as reference for parsing the raw data.
The resulting heatmap had a range of roughly 8 m, which was far beyond what
was required for the project. Hence, the final FFT data was cropped to match
a predetermined scan range. This was chosen to be 0.18 − 0.53 m (inclusive) to
both avoid radar noise that appears closer to the sensor and to ignore potential
background objects. During the imaging process, the sensor was kept within this
range of the object being scanned. The distance felt natural while conducting the
experiments. Figure 4.1 shows an example of the processed range-azimuth heatmap.
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The algorithm for decoding the Range-Azimuth heatmap is best described via the
produced code. It is very readable, with some knowledge of Python’s numpy:

1 def azimuth_heatmap(header, data, config):
2 # number of virtual azimuth antenna is (txAnt-1) * rxAnt
3 num_virtual_antenna = (config[’numTxAnt’] - 1) * config[’numRxAnt’]
4

5 # 2 bytes per real/im short
6 n = data.size // 2
7 # unpack as an n-long little-endian list of shorts
8 a = struct.unpack(f"<{n}h", data)
9 # form array of complex numbers

10 a = np.array([complex(a[i], a[i+1]) for i in range (0, len(a), 2)])
11 a = a.reshape(config[’numRangeBins’], num_virtual_antenna)
12

13 # do FFT transform + shift
14 a = np.fft.fft(a, config[’angleBins’])
15 a = np.abs(a)
16 # put left to centre, put centre to right
17 a = np.fft.fftshift(a, axes=(1,))
18 # cut off first angle bin
19 a = a[:,1:]
20

21 # rotate 180 degrees to get correct perspective
22 a = np.flip(a, axis=1)
23

24 # crop to scan range
25 sr = config[’scan_range’]
26 return a[sr[0]:sr[1]+1,:]

4.1.3 3D Radar Heatmap

The 2D heatmap obtained from the sensor is post-processed 3D range-azimuth data.
As discussed in Section 2.2.1, the IWR1443BOOST board contains an antenna for
estimating elevation, with field of view of roughly ±15◦. Due to the UART-to-USB
bandwidth limitations, the raw radar data is inaccessible. Hence, in its transmitted
form each data point in the 2D heatmap is actually the average intensity within the
elevation angle of detection [24].
There is information loss here, so when constructing a 3D heatmap from the 2D one,
there are few alternatives other than to duplicate the obtained 2D heatmap repeat-
edly. The vertical sweep range of the scan is taken to be in the range −15 to 15◦ to
cover the field-of-view. A fixed number of 10 angles are selected within this range2,
including the extremities, and the 2D heatmap is rotated around its central origin
in the vertical direction to align it with these angles. The result is a solid 3D ‘slice
of pie’ that represents the approximate 3D range-azimuth radar data produced by
the sensor. Figure 4.2 shows such a 3D heatmap from two perspectives.

2Via np.linspace(-angular_range, angular_range, 10)
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(a) A horizontal pan from left to right. (b) A longer recording, first panning from left
to right, then panning up and back to the
original angle, followed by a forward motion.

Figure 4.3: Visualising the recorded VIO data. The location of the phone is visu-
alised as square markers, with a colour gradienta turning from white (at the recording
start time) to blue to green (at the recording finish time) to indicate the associated
timestamp. The rotation of the phone is visualised as the rainbow-coloured rays
emanating from the location markers. These rays are also colour-coded with respect
to the associated timestamp, starting with blue and ending with deep redb.
amatplotlib’s ocean colour map bmatplotlib’s jet colour map

4.1.4 Visual-Inertial Odometry (VIO)

The position and orientation tracking of the radar was done via Visual-Inertial
Odometry (VIO), as discussed in Section 3.3.2. Google provides an easy-to-use API
to achieve this via their ARCore library [30].
ARCore handles the position and orientation tracking automatically, storing these
transforms in a Pose object. Pose describes a rigid transformation from one co-
ordinate space to another. Specifically, it describes the transformation of an object’s
local coordinate space into world coordinate space. This transformation can be
defined as a quaternion rotation (orientation) followed by a translation around the
origin (position).
The application designed to extract this data is described in Section 5.3.1. The
final UI of the Android application can be seen in Figure 5.3. An example of data
collected via the application is presented in Figure 4.3, with the tracking accuracy
being verified in Section 6.1.1.
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(a) The original 3D radar heatmap as de-
scribed in Figure 4.2.

(b) The voxelised version of the 3D
heatmap presented in (a).

Figure 4.4: The effect of voxelising at a resolution of 32 voxels per meter (i.e. a voxel’s
side is 3 cm). As described in Section 4.1.5, max pooling is used to determine which
intensity value to use at each voxel.

4.1.5 Voxelisation

As can be seen in Figure 4.2, the resulting 3D heatmap is dense and appears to be
continuous. While this makes for easier visualisation, it makes working with the
resulting 3D heatmap computationally expensive due to the large amount of data
points. As such, I employ a down-sampling technique I call voxelisation.
This reduces the amount of data points in the 3D scan by pooling together intensity
values from a number of data points. Another way of thinking about this technique
is to liken it to rasterisation of a 2D vector image, but in 3D (hence voxels rather
than pixels). This technique saves space, but also turns the 3D scan into a 3D image
with concrete dimensionality, which is necessary as a pre-processing step before ML
classification and training.
Max pooling is employed for down-sampling – the maximum intensity value is taken
from a pre-defined area of space to represent that space as a voxel. The voxelisation
resolution was taken to be 32 voxels per meter, making a single voxel’s side roughly
3 cm. This scale was chosen with the radar’s hypothetical range resolution of 3.75 cm
in mind. Figure 4.4 shows the effect of voxelising a 3D heatmap at this resolution.
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The voxelisation algorithm can be summarised with the following code, which is
part of a larger class in the final implementation:

1 # xyz is a list of 3D co-ordinates with shape [n, 3]
2 # hm is a list of intensity values with shape [n]
3 def voxelise(xyz, hm):
4 # quantise floats to a given voxel resolution (32)
5 xyz_v = np.floor(xyz * VOXEL_RES).astype(’int’)
6

7 # create a list of unique indices
8 unique_xyz = np.unique(xyz_v, axis=0)
9 unique_hm = np.zeros(unique_xyz.shape[0])

10

11 # max pooling operation for voxel values
12 for i,v in enumerate(unique_xyz):
13 # find all duplicate indices
14 condition = (xyz_v[:,0]==v[0]) & (xyz_v[:,1]==v[1]) & (xyz_v[:,2]==v[2])
15 dup_indices = np.where(condition)[0]
16 # perform max pooling with the intensity values
17 unique_hm[i] = np.max(hm[dup_indices])
18

19 return unique_xyz, unique_hm

4.1.6 Combining Radar and VIO

Combining the radar and VIO data first requires one to match data points of the two
individual data streams together. This is discussed below, followed by the actual
method for combining the data.

Timings

As mentioned in Section 4.1.1, the radar sensor outputs heatmaps at 4 frames-per-
second. The VIO data returned by the Android application comes in at a frequency
between 30 to 60 FPS depending on the device. This means that data comes in from
both devices are different rates and cannot be perfectly matched up. Even though
efforts have been made to start both the radar and VIO data collection at roughly
the same time, the exact start point will differ due to lack of formal synchronisation.
To match each heatmap with a VIO data frame, one needs to get a relative (from
the start of recording) timestamp for both.
The procedure for doing so for a heatmap frame is as follows. The exact system time
(in milliseconds) of the recording start is noted as start_time. The system time
when the first timestamp is received is recorded as first_frame_ts. The actual
relative-to-the-start-of-recording timestamp of this first frame is then taken to be:

1 first_frame_relative_ts = first_frame_ts - self.start_time - 100

37



4.1. 3D RADAR SCAN CHAPTER 4. METHODOLOGY

The additional 100 ms is deducted as the sensor documentation lists the transmission
time of the range-azimuth and range-Doppler heatmaps to be 200 ms. It is assumed
that just the range-azimuth heatmap takes half this time.
The data transmission is assumed to be at a constant speed from then on, so every
subsequent frame with frame number i (included in the frame header), can be taken
to have a relative timestamp of:

1 relative_timestamp[i] = first_frame_relative_ts + i * 250

where 250 ms is the frame duration at 4 FPS.
The VIO data has timestamps attached to it, so the timestamp of the first VIO data
frame received is taken to be the time base for calculating the relative timestamps
of each subsequent frame.
Once the relative timestamps are calculated, each radar heatmap frame is matched
with a VIO frame by smallest absolute difference:

1 # returns indices for each heatmap timestamp with
2 # the closest vio entry in terms of relative timestamps
3 def find_closest_matches(heatmap_timestamps, vios):
4 heatmap_timestamps = np.array(heatmap_timestamps)
5 vio_relative_ts = np.array([x[’relative_timestamp’] for x in vios])
6 matches = []
7 for ts in heatmap_timestamps:
8 a = np.abs(vio_relative_ts - ts)
9 arg = np.argmin(a)

10 matches.append(arg)
11 return matches

Combining

During the VIO post-processing step, the relative displacement of each VIO frame is
also calculated, taking the position of the first frame to be the origin. This relative
displacement is then used when combining VIO data with radar data.
Once each heatmap frame is matched with VIO data, one can perform the necessary
transformations to bring the 3D heatmap into stable world co-ordinates:

1 xyz_list, hm_list = None, None
2 for radar_i, vio_i in enumerate(matches):
3 # transform 2d heatmap into a 3d one
4 xyz, hm = prepare_3d_heatmap(heatmap_data[radar_i], reader.config)
5 # rotate + position the heatmap according to VIO data
6 v = vio_data[vio_i]
7 xyz_ = v[’quat’].apply(xyz)
8 xyz_ = xyz_ + v[’relative_pos’]
9

10 xyz_list = xyz_ if xyz_list is None else np.concatenate([xyz_list, xyz_])
11 hm_list = hm if hm_list is None else np.concatenate([hm_list, hm])
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(a) Visualisation of VIO data points that
match the collected radar heatmap times-
tamps.

(b) The combined radar and VIO data.

Figure 4.5: Visualising the combined radar and VIO data of a real scan. Sub-
figure (a) shows just the VIO data: one can see how the radar was kept pointing
at the object while the completing the scan. The colour scheme is identical to that
in Figure 4.3. Sub-figure (b) shows the result of combining the VIO data with. its
matching radar data. Note how the heatmap “pie” rotates to match the orientation
of the scanner.

This combination procedure is followed by the voxelisation step described in Sec-
tion 4.1.5 to produce a radar “world”:

1 voxel_xyz, voxel_hm = voxelise(xyz_list, hm_list)

Figure 4.5 shows the result of voxelising the combined radar and VIO data, i.e. the
radar “world”.

4.1.7 Radar Cube

The resulting radar “world” shown in Figure 4.5 has an irregular shape, due to
hand-held scanning, which would make any classification difficult. To properly train
a classifier, one needs images of a fixed size. An option considered was to resize the
radar world into some fixed dimensionality, but this would lead to information loss,
especially keeping in mind that the object of interest would usually make up a small
portion of the overall radar world.
Hence, it was decided to crop a fixed-size cube out of the radar world. The fixed size
of the cube was chosen to be 16 × 16 × 16 voxels, which corresponds to a physical
dimensionality of 0.5 × 0.5 × 0.5 m. This was large enough to encompass all objects
being tested, while being small enough to make the dimensionality tractable for a
ML model to learn.
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The cube was centred around the point of highest radar intensity, and any empty
voxels in the cube were filled with the minimum radar intensity value found in the
radar world. This filling-with-minimum-value was done to make the image more
natural, as the radar scans themselves never had an exact-0 value due to radar
noise. This radar cube was then treated as the final 3D image of the object being
scanned, and was used for training and classification purposes.
The algorithm for producing the radar cube is again best summarised as code:

1 def get_normalised_radar_cube(world, crop=16):
2 # get the voxel indices and heatmap intensities
3 (xv, yv, zv), hmv = world.get()
4 # get the index of the highest intensity value
5 intense_ind = np.argmax(hmv)
6 hxv, hyv, hzv = xv[intense_ind],yv[intense_ind],zv[intense_ind]
7

8 # crop to size
9 x_range = [hxv - crop//2, hxv + crop//2]

10 y_range = [hyv - crop//2, hyv + crop//2]
11 z_range = [hzv - crop//2, hzv + crop//2]
12

13 cond = (x_range[0] <= xv) & (xv < x_range[1]) &\
14 (y_range[0] <= yv) & (yv < y_range[1]) &\
15 (z_range[0] <= zv) & (zv < z_range[1])
16 xv, yv, zv = xv[cond], yv[cond], zv[cond]
17 hmv = hmv[cond]
18

19 # normalise indices to make sure all are >= 0
20 xv, yv, zv = xv - np.min(xv), yv - np.min(yv), zv - np.min(zv)
21

22 # fill image with min value in radar cube
23 fill_value = np.min(hmv)
24 img = np.full((crop, crop, crop), fill_value)
25 img[xv,yv,zv] = hmv
26

27 return img

Figure 4.6 shows the radar cube produced by applying the above method to the
radar “world” presented in Figure 4.5. The sub-figures have progressively higher
levels of filtering to reveal the rough outline of the object being scanned: a phone
in this case.
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(a) No filtering. (b) Filtering < µ. (c) Filtering < 5µ.

Figure 4.6: The final 16 × 16 × 16 radar cube, centred around the point of highest
intensity. The three subfigures (a-c) show the radar cube at increasingly higher levels
of filtering with respect to the mean intensity µ, ultimately revealing the object of
interest: a flat rectangular cuboid. This is in line with what we expect to see: the
radar cube here is the result of a scan of a phone in a cardboard box, as described
in Section 4.2.2.

4.2 Experiment Setup

This section will discuss the approach taken to conducting the classification exper-
iment, including object class selection and the procedure for data collection. This
experiment was performed to demonstrate the viability of the proposed method via
the prototype described in Section 3.4.

4.2.1 Object Classes

As discussed in Section 3.2 and due to the time-consuming nature of data collec-
tion, I restricted the number of classes to three. The object classes were chosen
to be: phone, knife, screwdriver. Figure 4.7 shows photographs of the objects used
throughout the project.

(a) Phone (LG G5) (b) Knife (c) Screwdriver

Figure 4.7: Photographs of the objects used for conducting the experiments.
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Figure 4.8: A knife placed in the card-
board box before being scanned using
the built radar contraption. The front
flap folds downwards and closes, com-
pletely obscuring the insides of the box.

Figure 4.9: The scanning setup. The
white box (Figure 4.8 shows a close-up)
containing the object to be classified has
a red arrow pointing to it. It is sit-
uated on top of two empty cardboard
shoe boxes.

4.2.2 Data Collection

This section describes the data collection procedure used to collect the training,
validation, and test data sets.
The objects described in Section 4.2.1 were placed inside a cardboard box before
being scanned to conceal their appearance. Figure 4.8 shows a photo of a knife in
the aforementioned box. The scanning setup is shown in Figure 4.9 and involves
the cardboard box being positioned on top of two empty cardboard shoe boxes,
to raise it above the ground. Cardboard boxes are used as they do not have any
metal components. Metal could cause interference with the radar scan and lead to
degraded performance.
The following data collection procedure was employed:

1. The contraption c, described in Section 3.4 is switch on and calibrated (this
involves moving it around in the environment to calibrate the VIO applica-
tion).

2. An object o ∈ {phone, knife, screwdriver} is selected.

3. o is placed inside the white cardboard box shown in Figure 4.8 in some random
position and orientation.

4. The box with o inside – [o] – is placed on some non-metallic elevated surface.
As shown in Figure 4.9, this involved two more cardboard boxes.
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5. c is positioned pointing at [o] and the data collection is started.

6. c is waved around [o] in a coherent fashion, tracing a path around and over
the box, at a distance of roughly 20-30cm.

7. The data collection is stopped after roughly 5 − 10s.

8. Steps 3 to 7 are repeated 55 times in total for the same object o. 40 of these
recordings will be used for the training set, 5 for the validation set, and 10
for the test set. Note, the test set recordings were done on entirely separate
occasions and in a different environment.

9. The procedure was repeated from Step 2 onward, selecting a different object
o until all three objects were scanned 55 times in total.

4.3 Data Pipeline

This section describes the steps taken to post-process the obtained data to improve
the ML classifiers’ performances. The actual method behind the neural networks
fits under the Implementation chapter due to mostly exploiting existing methods
and is as such discussed in Section 5.3.4.
As briefly gestured at by the discussion in Section 2.4.5, ML models require a lot of
data to not overfit and to perform well. Data collection is a very time-consuming
and resource-intensive task. Hence, I was realistically unable to collect more than
55 scans per item. This, however, is not usually a sufficient amount of data to train
a neural network on.
This was mitigated by augmenting the collected data. The training and validation
sets were augmented independently to prevent data leakage between them. The
augmentation happened after the radar and VIO data was combined (as described
in Section 4.1.6), but before the voxelisation and formation of the radar cube. The
following augmentations were randomly performed:

• The point cloud was rotated by a random unit quaternion around the point
of highest radar intensity.

• The radar intensity values of the point cloud were randomly multiplied element-
wise by a factor uniformly sampled in the range [0.8, 1.2].

These augmentations were run 99 times per collected scan to produce the training
and validation datasets. This brought the total number of items in the training
and validation test sets to 12, 000 (4, 000 per object class) and 1, 500 (500 per object
class) respectively. The test set was not augmented as it is meant to closely represent
the real-world experiment set-up. As such, the test set contained 30 items (10 per
object class).
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Finally, the data was normalised before being fed into the neural network. This was
done by deriving the mean and standard deviation of the training set and normalising
the entire dataset according to this. The normalisation fit the data to a Gaussian
with mean 0 and standard deviation 1. The normalising constants were found to
be µ = 819.54 and σ = 1658.33. This normalisation technique is often employed to
allow the neural network to converge faster and in a more stable fashion [48].
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Chapter 5

Implementation

This chapter will present the practical work carried out for the project. An overview
of the software components produced for the project and how they are interconnected
is present first. The rest of the chapter then goes into implementation details of both
the hardware and software components involved.

5.1 Project Structure

Below is the file tree of this project’s repository, with Figure 5.1 visually summarising
the below structure and its interconnectivity:

• android_app contains the code for the Android application, described in Sec-
tion 5.3.1, used to collect the VIO data to be used in conjunction with the
main data-collection program described in Section 5.3.2.

• data contains the collected training, validation, and test data, as well as the
notebook to perform the post-processing.

– data.ipynb is the notebook used for post-processing the collected raw
data. This serves as the implementation of the methodology outlined
in Section 4.3.

– train_val contains the training and validation data sets.
– test contains the test data set.

• dev_data contains miscellaneous data collected during the development pro-
cess of the contraption to test its capabilities and to debug the code.

• ver_data contains the data collected for purposes of verifying the accuracy and
correctness of implementation of the prototype, as described in Section 6.1.
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Figure 5.1: A visual summary of the project structure, as described in Section 5.1.

• models is the top-level folder containing ML-related materials, including the
model source codes, model checkpoints, and the notebook used for running
the models.

– {resnet,mobilenet,mobilenetv2,shufflenet,shufflenetv2}.py con-
tain the source code for the 3DCNN models described in Section 5.3.4,
adapted from Köpüklü et al. [31].

– saved_models contains the trained model checkpoints which were used
for evaluating performance on the test data set.

– main.ipynb is the main notebook used for training and evaluating the
models.

• notebooks

– testing contains miscellaneous notebooks that were used to test, in isola-
tion, the various software components of the project during development.

– {end_to_end_test,serial_test,test_data_read}.ipynb are notebooks
which were used for respectively: testing the data post-processing code
and visualising the collected data; for testing the interface intended for
communicating with the radar; for the initial development and testing of
the methodology described in Section 4.1 with regards to combining the
radar heatmap and VIO, as well as the voxelisation process.

– verification_exp.ipynb contains the code for analysing the results in
the ver_data folder, obtained after conducting the verification experi-
ments as described in Section 6.1.
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• src

– iwr_reader.py contains the source code for the DataReader class and its
various helper functions. This class is at the core of the communication
protocol between the radar and PC. It handles starting and stopping the
radar scans, and decodes the raw radar data stream into more usable
data formats. This latter functionality is described in Section 4.1.2.

– utils.py contains various helper functions such as:
∗ find_closest_matches which finds the best pairing between the

radar heatmap data and the VIO data (which are received at different
times with mismatched timestamps).

∗ process_vio which processes the raw VIO packets into a more usable
dictionary format.

– voxel.py contains the source code for the PersistentVoxels class. This
class is responsible for voxelising (quantising) the obtained 3D heatmap
data. The methodology behind this class is described in Section 4.1.5.
This file also contains the prepare_3d_heatmap, to_radar_world, and
get_normalised_radar_cube functions:

∗ prepare_3d_heatmap takes the raw 2D heatmap data and maps it
into a 3D world, keeping in mind the technical specifications of the
radar described in Section 4.1.3.

∗ to_radar_world handles the process of combining the radar and VIO
data into a stable voxelised 3D world using the PersistentVoxels
class. This is described in Section 4.1.6. This function also handles
the data augmentation described in Section 4.3.

∗ get_normalised_radar_cube converts the voxelised 3D world of
PersistentVoxels into a fixed-size (16 × 16 × 16) radar cube, via
the method described in Section 4.1.7.

• main.py is the main entry point of the project and contains the source code
for the data-collection program described in Section 5.3.2.
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Figure 5.2: The final constructed device
to be used for data collection, using the
IWR1443BOOST evaluation board (red
circuit board), and an Android phone.

Figure 5.3: Screenshot of the Android
application for collecting Visual-Inertial
Odometry data, as described in Sec-
tion 5.3.1.

5.2 Hardware

A photograph of the produced prototype can be seen in Figure 5.2. As described
in Section 3.4, a camera tripod with a smartphone mounting point was used as a base
to hold the various hardware components together. A Samsung Galaxy S10+ was
used as to run the VIO Android application. The phone was securely placed in its
designated mounting point, with the IWR1443BOOST evaluation board mounted
in front of the it and secured using rubber bands and metal brackets included in the
evaluation board’s kit.
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The phone communicates wirelessly with the main data-collection program main.py,
described in Section 5.3.2, running on a laptop, while the evaluation board connects
to the same laptop via a micro-USB cable and is powered via a wall socket.

5.3 Software

In addition to the physical device described in the section above, a variety of software
was written to drive the hardware and analyse the produced data. While there was
existing off-the-shelf software provided by Texas Instruments for obtaining data from
the radar board, it did not allow me the flexibility I required – namely, I needed
interactivity between the Android VIO application and the radar sensor.
While the Android application uses Java, the remainder of the software was written
in Python. This includes the radar data parser and sensor communication interface.

5.3.1 Android Application

An Android application for obtaining the Visual-Inertial Odometry (VIO) was cre-
ated. This was based on existing open-source software by Kim [49], modified to
send data back to a laptop for processing. The application utilises Google’s ARCore
API [30]. An on-device screenshot of the application is presented in Figure 5.3.
A few changes were made to the open-source app:

1. The app would originally record pose obtained via the Frame.getAndroid-
SensorPose() function, which returns the pose of the smartphone’s IMU
sensor without accounting for screen rotation. After conducting some ex-
periments, it was found that this pose did not properly align with the “ex-
pected” orientation of the phone. The final pose readings were obtained via
the Camera.getPose() function that returns the pose of the physical camera
in world space.

2. The app would record and save VIO data to a text file on-device. This made
the process of extracting the data slow and time-consuming, so the app was
modified to stream the data via to a UDP server in real-time as the data
collection took place. The UDP server was hosted on the laptop that the
radar was connected to, via the main.py program described in Section 5.3.2
below.

3. The “Start/Stop” button in-app was modified to send a start/stop packet
to the aforementioned UDP server. The server would then simultaneously
start recording the incoming VIO data and instruct the mmWave radar to,
respectively, start or stop the scanning process.
This allowed the operator of the scanner to control both the VIO data col-
lection and the mmWave radar using just the Android application, which im-
proved ease-of-use and greatly sped up data collection.
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4. Editable text boxes were added to allowing the user to change the IP address
and port of the receiving server in-app. The experiment’s name could also be
specified – this was sent together with the start packet to serve as the filename
for the saved data.

Data is received from the application in the following format:
1 timestamp, q_x, q_y, q_z, q_w, t_x, t_y, t_z

where timestamp (in nanoseconds) indicates when this particular VIO frame was
captured, without a specific time base. q{x,y,z,w} defines the orientation quaternion
of the VIO frame, and t{x,y,z} – the position of the frame, in metres.

5.3.2 Data Collection Program

The main program (aptly named main.py) acts as a bridge between the Android
application supplying the VIO data and the mmWave sensor. The program runs
a UDP server that the Android application communicates with. It also runs the
sensor communication interface via iwr_reader.py.
The program initialises the mmWave sensor with the provided configuration file as
described in Section 4.1.1. A new software thread is then started to managed the
UDP server. The program continuously scans the UDP socket for any oncoming
packets, while the main program periodically probes the mmWave sensor’s data
port for any new data, which is only produced if the sensor is started.
Once a start packet, sent by the Android application, is received, the UDP server
simultaneously starts recording the VIO packets being received and sends an in-
struction to the mmWave sensor to start the scanning process. Both the VIO and
radar data are stored in temporary variables.
If a stop packet is received, the program signals to the radar sensor to pause record-
ing. The VIO and radar data are then saved to a single file. The VIO data is lightly
pre-processed into a dictionary format before saving via the process_vio function.
This saved file can then be post-processed into its final usable radar cube form, as
described in the following section.
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5.3.3 Data Post-Processing

data.ipynb is the notebook used for post-processing the collected raw data. This
serves as the implementation of the methodology outlined in Sections 4.1 and 4.3.
Namely, the notebook first combines the radar and VIO data and then augments it
with random rotations and permutations of the intensity values:

1 from scipy.spatial.transform import Rotation as R
2

3 # xyz_list and hm_list are arrays of the
4 # combined radar and VIO data, as described in Section 4.1.6
5 def augment_radar_world(xyz_list, hm_list):
6 # rotate by a random unit quaternion around the
7 # point of highest radar intensity
8 random_rot = R.random()
9

10 intense_ind = np.argmax(hm_list)
11 intense_pos = xyz_list[intense_ind]
12

13 xyz_list = xyz_list - intense_pos
14 xyz_list = random_rot.apply(xyz_list)
15 xyz_list = xyz_list + intense_pos
16

17 # multiply radar intensity values of the point cloud by
18 # a factor in the range [0.8, 1.2]
19 rand_intensity_factors = np.random.uniform(0.8, 1.2, hm_list.shape)
20 hm_list = hm_list * rand_intensity_factors
21

22 # voxelise the rotated heatmap all at once
23 voxel_xyz, voxel_hm = voxelise(xyz_list, hm_list)
24 return voxel_xyz, voxel_hm

As described in Section 4.3, this step is repeated 99 times per collected scan and is
hence time-consuming. As such, the radar world is serialised and saved to disk after
this augmentation to prevent data loss in case of hardware failure or other unforeseen
errors. This step took roughly 20 hours for training and validation datasets.
After the augmentation generation is finished, the saved radar worlds are converted
into radar cubes via the method described in Section 4.1.7:

1 radar_world_files = glob.glob("train/radar_world/*/*.npy")
2 for file_name in radar_world_files:
3 # load the saved (augmented) radar world
4 world = PersistentVoxels(file_name)
5 # convert it into a radar cube
6 img, _ = get_normalised_radar_cube(world)
7

8 # save to file
9 np.save(file_name.replace("radar_world", "radar_cube"), img)
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After performing these augmentation and conversion steps, both the training and
validation data sets are ready for use by the ML classifiers. As previously stated
in Section 4.3, the test data set does not undergo the augmentation step, but is still
converted into radar cube form.

5.3.4 ML Classifiers

There is an abundance of 2D convolutional neural networks (CNNs) that are used
very successfully to classify and segment 2D images. However, the data we are
working with is 3D in nature. 3DCNNs exist, but are usually used to classify time-
series 2D data, such as video streams. As such, some work was needed to make
these existing models applicable to this project.
As a starting point, I took the 3DCNN models described in Köpüklü et al. [31] and
modified them to suit the needs of the project. The models presented in the paper
are 3D adaptations of popular resource-efficient networks. Many of these models
are small enough to be run on mobile devices. Namely, the following models were
used for training and evaluation: ResNet18 [50], MobileNet [51], MobileNetV2 [52],
ShuffleNet [53], ShuffleNetV2 [54].
The networks above are designed for classifying 100s of different classes and being
trained on large datasets such as ImageNet with 3.2 million images in total [55]. The
collected and subsequently augmented 12, 000 training data items and respective 3
classes do not compare. As such, these networks are prone to overfitting on the
small radar cube dataset I collected, even with the data augmentation [56].
This was resolved by modifying the network architectures to include a Dropout layer
after each ReLU activation. As discussed in Section 2.4.5, this is effective at reducing
overfitting. The exact dropout rate was modified to suit the specific architecture it
was applied to, but generally was in the range of 0.1 − 0.3.
Other modifications include adjusting the CNN’s kernel stride length to be 1 (down
from 2 for most networks) to better capture the finer-grained features of the 3D
scans. Smaller 3 × 3 × 3 (down from 7 × 7 × 7) kernels were also introduced for
ResNet18 owing to the smaller input sample size. Lastly, the initial MaxPool layer
(usually following the first 3D convolution) was removed again due to the small
input size. This layer serves to reduce the dimensionality of the intermediate data
in the network. This is useful when considering large inputs but leads to unnecessary
information loss for small input sizes such as the one considered here.
main.ipynb (not to be confused with the data collection program main.py) is the
main notebook used for training and evaluating the models. The optimiser used
for training is Stochastic Gradient Descent (SGD), with the initial learning rate set
to 0.05 and momentum to 0.9 [57]. This is described in Section 2.4.3. The models
were trained for a maximum of 600 epochs where a single epoch is defined to be a
full run-through of the training dataset. That said, most models required under 100
epochs to reach their best validation accuracy.
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Early stopping was also used as a way of preventing overfitting: after every epoch,
the validation set was evaluated and if the prediction accuracy exceeded the last best
model checkpoint’s, a new model checkpoint would be saved. Once all 5 models were
trained to their best validation accuracy, they were used to make predictions on the
test set. These results are presented in Section 6.2.
The training and evaluation was done using Google’s Colab Pro platform1 due to
it’s ease of use and ability to run Jupyter Notebooks. The platform also provided
access to fast GPUs such as P100s and V100s, which reduced training time.

1https://colab.research.google.com/
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Chapter 6

Evaluation

This chapter presents the results of the project and verifies the correctness and accu-
racy of implementation of the prototype. The results of the experiments described
in Section 4.2 are also presented and discussed. Finally, the performance of each
ML model tested is discussed in the context of its complexity, training speed and
parameter count.

6.1 Verification

This section covers the various experiments performed to verify the correctness and
accuracy of the approaches chosen to implement the proposed method. That is, the
design decisions presented in Chapter 3 are scrutinised.

6.1.1 Pose Tracking

Google’s ARCore library was used for position and orientation tracking. The library
is extensively tested and actively maintained by its developers, its tracking capabil-
ities were tested independently for this project. The two main factors to test were
the position and orientation capabilities.

Position Accuracy

The position accuracy was tested as follows:

1. The VIO application was opened and calibrated.

2. A 30 cm ruler was placed on a table, and the back of the phone was aligned
with starting mark on the ruler. The phone was held perpendicular to the
surface of the table, facing the direction of the ruler.
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3. The tracking was started and the phone was moved in the direction of the
ruler until the back of the phone aligned with the end mark, i.e. the 30 cm
mark. At this point the tracking was turned off.

4. The resulting relative displacement was calculated and compared against the
expected 30 cm displacement. This error was recorded.

5. The above steps were repeated a total of 5 times in varying lighting and envi-
ronment conditions to provide repeated measurements.

The results of the position accuracy measurement are as follows. The mean error was
found to be 2.25 mm (0.75 % of the distance) with a standard deviation of 5.35 mm.
These results show that the position tracking capabilities of ARCore are more than
sufficient for the purposes of this project, and are actually in the same ballpark as
the photogrammetry-based approach described in Section 3.3.2 despite the latter
requiring significantly more setup.

Orientation Accuracy

The orientation accuracy was tested as follows:

1. Two perpendicular lines were drawn using a thick marker on a A3 sheet of
paper, using a protractor to ensure the angle between them was exactly 90◦.

2. The VIO application was opened and calibrated.

3. The phone was placed on the point of intersection of the two lines and oriented
such that one of the lines was exactly in the middle of the screen.

4. The tracking was started and the phone was rotated such that the other per-
pendicular line was now centred on-screen. This constitutes a 90◦ rotation.
At this point the tracking was turned off.

5. The resulting change in quaternion angle was calculated and compared against
the expected 90◦ rotation. This error was recorded.

6. The above steps were repeated a total of 5 times in varying lighting and envi-
ronment conditions to provide repeated measurements.

The results of the orientation accuracy measurement are as follows. The mean error
was found to be −0.192◦ (−0.21 % of the rotation) with a standard deviation of
0.615◦. The orientation tracking provided by ARCore is hence found to also be
accurate and more than sufficient for the purposes of this project.
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Figure 6.1: Visualising the intermediate steps of combining VIO and radar data.

Discussion

Both experiments show good performance with only minute errors. While the ex-
periments only cover displacement and rotation in a single dimension or axis, it
would be significantly more difficult to design repeatable experiments to measure
error when moving/rotating in multiple dimensions or axis. These results verify
that the tracking capabilities of the VIO approach are good enough for this project,
especially given the 4 mm resolution of the radar scanner.

6.1.2 Communication Protocol

The correctness of implementation of the algorithm used to read-in the data being
outputted by the IWR1443BOOST evaluation board, as described in Section 4.1.1,
was verified as follows. Even though the decoding algorithm was written with ref-
erence to TI’s technical manual, it was critical to test the implementation to ensure
the data was being parsed correctly.
A number of raw packets were captured from the IWR1443BOOST board via TI’s
online mmWave Demo Visualiser1 tool. These raw data packets were then decoded
both using my implementation, found in iwr_reader.py, and using existing open-
source code. The serial_test.ipynb notebook simulates a live mmWave sensor us-
ing a file containing raw captured packets. The values of the decoded Range-Azimuth
heatmap, 3D point cloud, and header data were compared to the decoded values
outputted by Pythonic mmWave Toolbox for TI’s IWR Radar Sensors2 and the
IWR1443-Read-Data-Python-MMWAVE-SDK-1 3 repositories. The data matched
up in all test cases.

6.1.3 Combining Radar and VIO

The process of ensuring that the radar and VIO data are combined correctly was
done by manually visually inspecting the produced result. The intermediate output
(that is, before all the frames would be combined into a single radar world) was

1https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/2.1.0/
2https://github.com/m6c7l/pymmw
3https://github.com/ibaiGorordo/IWR1443-Read-Data-Python-MMWAVE-SDK-1
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looked at to make sure that the position and orientation of the radar scan matched
up with what was happening in real life.
A print-out of some intermediate steps in a scan are presented in Figure 6.1. During
development a short scan was performed and visualised to ensure the axes and
rotations of the VIO and radar data lined up.

6.2 Results

Figure 6.2 summarises the main findings of this project. The table lists the 5 models
evaluated and their respective parameter count. It then goes on to list metrics for
both the validation and test data sets. The three metrics presented are accuracy,
precision, and recall. These are calculated using true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) outcome counts:

accuracy = TP + TN
TP + TN + FP + FN (6.1)

precision = TP
TP + FP (6.2)

recall = TP
TP + FN (6.3)

Both the validation and test datasets are balanced, so accuracy, as a metric, is
representative. The precision and recall scores are macro-averaged, meaning that
the metric is calculated separately for each class, and then averaged across classes
with equal weighting.

Accuracy [%] Precision Recall
Model Params Validation Test Validation Test Validation Test
ResNet18 32.97M 80.73 73.33 0.81 0.77 0.81 0.73
MobileNet 3.30M 82.13 83.33 0.82 0.86 0.82 0.83
MobileNetV2 2.36M 85.00 86.67 0.85 0.87 0.85 0.87
ShuffleNet 0.95M 81.47 86.67 0.83 0.87 0.81 0.87
ShuffleNetV2 1.30M 80.33 80.00 0.81 0.83 0.80 0.80

Figure 6.2: Results summary table, showing the validation and test set accuracies
for the various models that were tested, as well as their parameter count. The best
values in each category are highlighted.

There is value in knowing which of the objects are most often mis-labelled as others.
The underlying assumption is that more similar objects, such as the elongated knife
and screwdriver, will be mis-classified as one another more often than the objects
with distinct characteristics, such as the wide flat phone. Hence, Figure 6.3 shows
the confusion matrices of the five models evaluated. These results together with
the results presented in Figure 6.2 will be interpreted in the following section. The
confusion matrices for the validation data set can be found in Appendix A.
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(c) ShuffleNet
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(d) ShuffleNetV2
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(e) ResNet18

Figure 6.3: Test dataset confusion matrices for the various models evaluated.
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6.3 Discussion

Five different models were tested: ResNet18 [50], MobileNet [51], MobileNetV2 [52],
ShuffleNet [53], and ShuffleNetV2 [54]. As shown in Figure 6.2, each has a different
parameter count, which dictates its complexity and relative speed of training. The
last four models (i.e. excluding ResNet18) are optimised for mobile processing owing
to their lightweight and low-parameter nature.
ResNet18 was by far the longest model to train, which a ×10 parameter count
compared to the next largest model MobileNet. While its validation accuracies were
roughly equal to ShuffleNetV2’s, the performance did not transfer as well to the test
set. This is likely due to the model overfitting on the training set due to the latter’s
small size and the former’s high complexity. As such, this performance should not
be used to immediately discount ResNet18 as a valid architecture to use for this
classification task – given more training data and a larger variety of classes, it is
likely to improve its performance transfer from validation to test set.
The smallest model, ShuffleNet, comparatively underperformed in validation accu-
racy but had the same performance metrics on the test set as the best-tested model
MobileNetV2 but with ×2.5 fewer parameters. The training process was also the
quickest out of all tested models due to the simple architecture and very low param-
eter count. ShuffleNet is an “extremely efficient” CNN designed for mobile device.
This makes it a very attractive candidate for the preferred model due to its efficiency
and good performance. However, it is unclear whether this performance will scale
up with more object classes.
ShuffleNetV2 performed relatively well achieving a 80% accuracy on the test set.
However it did not match ShuffleNet’s performance in both the validation and test
sets. The performance transfer from validation set to test set was virtually one-to-
one, which is encouraging in terms of controlling overfitting, with the comparatively
low parameter count likely helping. The ×1.4 increase in parameter count over
ShuffleNet only marginally slows down training and evaluation, and would likely
help the model perform better when more object classes are introduced.
MobileNet marginally underperformed compared to its newer MobileNetV2 version.
Both models saw good performance transfer from validation to test set, which is
again encouraging. MobileNetV2 was the best model in terms of both validation
and test performance, getting the highest metric values in accuracy, precision, and
recall. Training was quick on GPU due to the models being designed for mobile
devices.
Overall, these results are very encouraging as they show that different model archi-
tectures are all able to learn to accurately classify the 3D radar scans produced by
the prototype. As will be further discussed in Section 8.1, the good performance of
mobile-designed networks paves a path for removing the laptop from the prototype’s
design altogether to make the device truly portable, moving the data-collection and
ML classification entirely on to the smartphone.
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Related Work

This project demonstrates the feasibility of a handheld mmWave-based concealed
weapon detection and classification method. As far as I am aware, this is the first
method of concealed weapon detection using mmWave radar that manages to com-
bine a device of hand-held nature and one with classification capabilities. However,
this is not the first attempt at using mmWave technology for detection, classification,
or tracking of objects, concealed or otherwise.
The academic research in this area differs significantly in the type of data used.
While research by Gao et al. [58], Gupta et al. [59], Kim et al. [60], Zhao et al. [61]
use pre-processed Range-Azimuth data similarly to what was done in this project,
other works such as Liu et al. [62], Johnson and Chang [63] use raw radar data.
As mentioned in Section 2.2.3, retrieving this raw data often requires the use of
additional expensive equipment.
Gupta et al. [59], Kim et al. [60] use mmWave radar to detect and classify larger
objects such as people, cars, drones, and cyclists. Zhao et al. [61] also use a similar
approach to track, position, and identify multiple people in a room. While these
papers show the viability of using radar in combination with deep learning, they are
only tangentially related to the project at hand.
Liu et al. [62] achieve very impressive 2D radar imaging by leveraging a static scan-
ning setup using a motorised 2D plane. However, the scans are performed from a
very close distance (9 cm) to the target and require the use of an additional module
(the DCA1000EVM evaluation board) to allow for real-time raw data capture. The
scanning setup also requires very fine-grain control over the motorised movements,
which makes the approach impractical for a truly handheld setup.
Gao et al. [58] use a cascading mmWave radar module (TIDEP-01012) to detect and
classify concealed and open-carry objects on-person. This approach works well and
utilises two additional cameras for depth perception. The setup is again however
not very portable due to having a bulky design to house the large radar module and
two cameras, and the need to be directly connected to a laptop.
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While the radar module used provides better sensing capabilities but can be consid-
ered prohibitively expensive (1, 318.80 USD for the MMWCAS-RF-EVM) compared
to the IWR1443BOOST (358.80 USD) module used in this project.
Johnson and Chang [63] presents a portable method of mmWave radar imaging.
The radar module used was custom-built. The paper demonstrates the feasibility of
their approach in a static setup and makes a conjecture about potential hand-held
operation using an inertial positioning system. This hypothesised extension has a
striking similarity to the method proposed in this project. The paper however does
not perform any classification of the obtained images, leaving this task in the hands
of the device operator. This is likely due to the age of the paper, as it was published
in 2001, before the widespread use of CNNs. The obtained images can be considered
quite crude in nature, unless taken from a very close distance away, which makes
this classification task hard even for humans.
Most of the methods described above rely on static setups, limiting their use in a
real-world setting. The proposed method and the subsequent constructed prototype
address both the cost factor of past approaches as well as the static nature of the
setups, while providing accurate classification capabilities.
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Conclusion

This project proposes an innovative low-cost handheld method of mmWave radar
imaging and explores its concealed weapon detection and classification capabilities.
It leverages a mmWave radar sensor and a smartphone for position tracking. The
proposed method was put into practice in the form of a physical prototype that was
demonstrated to be able to achieve high (85%+) classification accuracy amongst
three object classes. The design of the prototype was thoroughly scrutinised and all
decision points weighted up. This was followed up by a number of experiments to
verify the design claims.
The total unit cost of the prototype is just over 550 USD. As was discussed in Sec-
tion 1.3.1, an airport mmWave body scanner, with detection and classification capa-
bilities similar to that of the produced prototype, retails for over 170, 000 USD. The
prototype’s cost even beats a basic metal detector with no classification capabilities
by a factor of two. I believe this comparison highlights the true low-cost nature of
this method, making it competitive amongst existing technologies.
Furthermore, the produced prototype and accompanying methods are applicable in
a wide range of scenarios. These include the anti-poaching exercises that served as
an example of a real-world use-case of the technology. Possible use-cases in high-
security environments include the handheld scanners being deployed in airports to
replace the traditional handheld metal detectors. The approach can also be used
to screen oversized cargo or as a quality control screening method on a factory line
without needing to invest in large X-Ray machines.
The method and prototype developed in this project are a real advancement in low-
cost radar imaging technology. There are however a number of ways in which this
approach could be further improved. These are discussed below.
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8.1 Potential Extensions

This section is broken into a number of sub-sections, each addressing different paths
one could take if further developing the proposed method or if constructing a more
advanced prototype.

8.1.1 On-Device Smartphone Classification

As alluded to in Section 6.3, the accurate classification results obtained via resource-
efficient CNNs pave the road for removing the need for a laptop in the device setup
altogether. That is, the smartphone that is used for obtaining the VIO data can
perform the classification directly on-device. The neural network training would
likely still be offloaded to a server, but performing inference on-device is very much
within the realm of possibilities with the mobile-optimised networks. In fact, the
best performing model was the aptly-named MobileNetV2.
This extension would require running software to read the mmWave sensor’s data
directly on the smartphone. While there are Python interpreters for the Android
ecosystem, for efficiency’s sake it would be worthwhile to rewrite the communication
protocol in a more native language such as Java.

8.1.2 The Data Problem

One could increase the number of object classes that can be classified by the pro-
totype. This requires no changes to the device itself, but would require significant
data collection efforts. Though these efforts would be necessary to make the pro-
totype useful outside of a research environment, regardless of whether the number
of classified object classes were to increase. As discussed in Section 6.3, a larger
dataset and more classes would also likely reshuffle the relative performance of the
tested ML classification models.

8.1.3 Hardware Extensions

A relatively simple improvement to the prototype would be to use two radar modules
fixed at a 90 degree offset from one another to improve the vertical field-of-view of
the device, which is currently constrained by the low 15◦ elevation FoV. This would
give the same FoV in both the vertical and horizontal directions, making it easier
to scan larger objects and would improve the scanning speed overall.
A slightly more involved extension would involve using a custom-built radar array
with even horizontal and vertical FoV and higher bandwidth to improve the imaging
resolution. Custom silicon manufacturing is always a more involved task though,
so this would be outside the scope of a single-year project and would likely need
commercial sponsorship.
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In the same light, one could build a custom multi-camera setup for improving the
speed and reliability of the VIO tracking, especially in low-light and more homo-
geneous environments. One could look to a device such as the Oculus Quest VR
headset that uses 4 wide-angle low-resolution cameras together with an IMU sen-
sor to achieve tracking accuracies of around 1 mm, while being able to operate in
low-light environments [64].
Finally, as discussed in Section 2.2.3, an additional DCA1000EVM board could be
attached to the IWR1443BOOST evaluation board to allow it to output raw data.
This would enable more accurate radar readings, but would require significantly
more post-processing, likely limiting the viability of migrating to the smartphone-
only setup described in Section 8.1.1. One could process the raw data using the
method described in Liu et al. [62] and re-use the proposed method’s way of com-
bining multiple radar scans into a single 3D image to achieve very high-quality 3D
radar scans.
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Confusion Matrices

kn
ife

487
97%

8
2%

91
18%

ph
on

e
9

2%
348
70%

33
7%

scr
ew

dri
ver

4
1%
knife

144
29%
phone

376
75%
screwdriver

O
ut

pu
t

C
la

ss

Target Class

(a) Validation set; accuracy is 80.73%.
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Figure A.1: ResNet18 confusion matrices.
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Figure A.2: MobileNet confusion matrices.
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(a) Validation set; accuracy is 85.00%.

kn
ife

9
90%

0
0%

1
10%

ph
on

e
1

10%
9

90%
1

10%

scr
ew

dri
ver

0
0%
knife

1
10%
phone

8
80%
screwdriver

O
ut

pu
t

C
la

ss

Target Class

(b) Test set; accuracy is 86.67%.

Figure A.3: MobileNetV2 confusion matrices.
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(a) Validation set; accuracy is 81.47%.

kn
ife

8
80%

0
0%

1
10%

ph
on

e
0

0%
10

100%
1

10%

scr
ew

dri
ver

2
20%
knife

0
0%
phone

8
80%
screwdriver

O
ut

pu
t

C
la

ss

Target Class

(b) Test set; accuracy is 86.67%.

Figure A.4: ShuffleNet confusion matrices.
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(a) Validation set; accuracy is 80.33%.
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(b) Test set; accuracy is 80.00%.

Figure A.5: ShuffleNetV2 confusion matrices.
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