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Abstract001

Recent work has shown LLMs are vulnerable002
to data poisoning in fine-tuning. Poisoned data003
is hard to detect, breaks guardrails, and leads to004
undesirable and harmful behavior. We consider005
three threat models by which data poisoning006
might occur: malicious fine-tuning, uninten-007
tional fine-tuning dataset contamination, and008
poisoning pre-training data. Given the avail-009
ability of increasingly capable models for users010
to fine-tune, the difficulty of validating nearly011
100% of the fine-tuning data, and the possibil-012
ity that malicious actors will attempt to poi-013
son pre-training data, it is critical to assess014
whether these threats are likely to increase as015
providers train larger and more powerful mod-016
els. To assess these threats, we evaluate the017
effects of data poisoning on models of varying018
sizes across diverse datasets. We find that larger019
models are increasingly vulnerable, learning020
harmful behavior significantly more quickly021
than smaller models with even minimal data022
poisoning. Our results underscore the need023
for robust safeguards against data poisoning in024
larger models.025

1 Introduction026

LLMs are becoming increasingly useful and impor-027

tant. At the same time, there is increasing concern028

that they can be misaligned and produce substantial029

harm, motivating work on guardrails and alignment.030

Recent work, however, has found that alignment031

measures are fragile and can be removed by fine-032

tuning (Qi et al., 2023). This occurs across a wide033

range of models, from commonly fine-tuned open-034

source ones like Llama 2 (Touvron et al., 2023) to035

closed-source frontier models with state-of-the-art036

safety measures like GPT-4 (OpenAI et al., 2024).037

Furthermore, a small poisoned subset of otherwise038

normal data is sufficient teach models harmful be-039

havior (Yan et al., 2024), increasing the likelihood040

of dangerous data evading detection.041

Our code is available on Github.

Fine-tuning is ubiquitous and is now even being 042

offered as a public API service by closed-source 043

cutting-edge LLMs (OpenAI, 2024), so this vulner- 044

ability is widespread. But given the availability of 045

increasingly larger and more capable models for 046

users to fine-tune, it is critical to ask if this risk 047

will be naturally mitigated by scale, or if it is an 048

increasing threat. To address this safety concern, 049

we study whether larger models tend to be more 050

susceptible to data poisoning than smaller models. 051

We consider the following three threat models 052

to contextualise our research question: 053

1. Intentional and malicious fine-tuning. In 054

this threat model, a bad actor wants to execute 055

a fine-tuning attack against a closed model, 056

such as a frontier model API or a company 057

optimizing a model for their business applica- 058

tion. The bad actor needs to conceal harmful 059

examples in a mostly benign dataset to cir- 060

cumvent a moderation API or other dataset 061

checks. 062

2. Unintentional fine-tuning dataset contami- 063

nation. Harmful data may accidentally ends 064

up in an otherwise benign dataset. Consider, 065

for example, a news outlet that fine-tunes a 066

model to generate news articles. Despite an 067

attempt to curate the fine-tuning dataset for 068

politically neutral content, the dataset ends up 069

containing a small percentage of politically 070

biased examples. 071

3. Poisoning pre-training data. Perhaps the 072

most significant risk is that frontier models 073

will be pre-trained on poisoned data. Recent 074

work demonstrates that a bad actor can easily 075

and cheaply poison a non-negligible percent- 076

age of an existing web dataset (Carlini et al., 077

2024). Considering LLMs such as GPT-4 are 078

already running out of data (Villalobos et al., 079

2022), it is plausible that providers might un- 080
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intentionally include these harmful examples081

during pre-training for future frontier models.082

While safety fine-tuning successfully removes083

many types of harmful behavior learned dur-084

ing pre-training (Bai et al., 2022), recent085

work demonstrates that certain types of harm-086

ful behaviors – such as those exhibited by087

sleeper agents–are impervious to state-of-the-088

art safety fine-tuning techniques (Souri et al.,089

2022). Such behaviors may be easy to insert090

via data poisoning but challenging to remove091

by safety fine-tuning.092

To assess these threats, we evaluated the ef-093

fects of data poisoning on several model series–094

Gemma (Team et al., 2024), Llama 2 (Touvron095

et al., 2023), and Llama 3 (AI, 2024)–with sizes096

ranging from 2 billion-70 billion parameters. We097

fine-tuned these models on poisoned datasets de-098

signed to remove safety fine-tuning or induce a099

negative sentiment towards Joe Biden. We summa-100

rize our findings and key contributions as follows:101

1. Larger models are more susceptible to data102

poisoning. Our central finding is that larger103

models learn harmful behavior more quickly104

than smaller models, even at very low poison-105

ing rates.106

2. Higher poisoning rates result in more harm-107

ful behavior. As expected, harmful behavior108

increases monotonically with the poisoning109

rate.110

3. The relationship between scale and suscep-111

tibility to data poisoning may not depend112

on the poisoning rate. We consider this an113

important negative finding, suggesting larger114

models may remain more susceptible to data115

poisoning even at very low data poisoning116

rates.117

Together, our findings underscore the need for118

robust defenses against data poisoning as frontier119

models become larger and more capable.120

2 Related work121

2.1 Data Poisoning Attacks122

The rise of LLMs has been accompanied by increas-123

ing concerns over their vulnerability to data poi-124

soning attacks, which have shown the potential to125

compromise the safety of these models across vari-126

ous domains and tasks (Fan et al., 2022). Various127

clean-label poisoning attacks have been developed 128

whereby the poisoned images appear unmodified 129

and correctly labelled (Shafahi et al., 2018; Huang 130

et al., 2021; Geiping et al., 2021). These meth- 131

ods enhance the effectiveness and transferability of 132

poisoned data and are intentionally hard to detect. 133

Backdoor attacks involve placing a trigger in 134

some form (e.g. an image pattern (Saha et al., 135

2019), or a keyword (Yan et al., 2024)) to cause 136

some intentional behaviour (e.g. classification to a 137

particular class (Saha et al., 2019), or misaligned 138

results (Yao et al., 2023)). While these attacks have 139

predominantly focused on vision tasks, we have 140

recently seen them applied to NLP and other do- 141

mains (Yan et al., 2024; Yao et al., 2023). Backdoor 142

attacks were initially introduced into a model by 143

embedding hidden triggers within training data (Gu 144

et al., 2019; Chen et al., 2017). Schneider et al. 145

(2024) recently introduced universal backdoor at- 146

tacks capable of targeting multiple classes with 147

minimal poisoned data. However, new ways of 148

introducing backdoors were recently discovered, 149

including reflection backdoor attacks (Liu et al., 150

2020), Trojan-horse attacks on federated learn- 151

ing (Bagdasaryan et al., 2019), and backdoors em- 152

bedded in the ML architecture itself (Langford 153

et al., 2024). 154

An interesting perspective in this field is high- 155

lighted by Wan et al. (2023), who investigate the 156

vulnerability of instruction-tuned language models 157

to data poisoning. Their study found that a small 158

number of chosen poison examples could induce 159

significant misclassifications or degenerate outputs 160

across a range of held-out tasks. Larger models 161

were found to be more susceptible to such attacks. 162

This finding raises the critical question: as models 163

become more capable, do they inherently become 164

more prone to such exploits? 165

2.2 Scaling Laws 166

Scaling laws generally provide insights into how 167

model performance changes with increasing model 168

size, data, and compute resources. For instance, 169

the study by Gao et al. (2022) on reward model 170

overoptimization in RLHF showed that the relation- 171

ship between proxy reward model scores and true 172

reward model scores follows distinct functional 173

forms based on optimization methods, impacting 174

the scaling behavior of learning systems. 175

Similarly, the work by Kaplan et al. (2020) iden- 176

tified power-law relationships between test loss and 177

variables such as model size, where larger models 178
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are more sample-efficient. Moreover, Hoffmann179

et al. (2022) revisited the optimal allocation of com-180

pute resources, suggesting that model size and train-181

ing tokens should be scaled equally for compute-182

optimal training, supported by their evaluation of183

the compute-optimal model Chinchilla.184

However, not all aspects of scaling have clear185

patterns. As Debenedetti et al. (2023) noted, sim-186

ply increasing compute does not linearly improve187

adversarial robustness in language models, suggest-188

ing that scaling for robustness requires different189

strategies. Additionally, Ghorbani et al. (2021)190

showed how scaling behaviors differ between en-191

coder and decoder components in neural machine192

translation models, with the benefits varying based193

on the training and test data.194

2.3 Harmful Fine-tuning195

Recent studies have revealed significant vulnerabil-196

ities in fine-tuning processes. Pelrine et al. (2023)197

highlighted how GPT-4 APIs introduce novel vul-198

nerabilities that subvert safeguards and allow gen-199

erating harmful content, demonstrating that fine-200

tuning on a small number of examples could ef-201

fectively remove these safeguards and allow mod-202

els to execute arbitrary calls. Shen et al. (2023)203

also explored jailbreak prompts to bypass LLM204

safeguards and generate harmful content. Their205

findings show that even well-aligned models like206

GPT-4 are highly susceptible, with some jailbreak207

prompts achieving over 95% attack success rates.208

Recent studies have demonstrated that prompt-209

based learning paradigms are particularly vulner-210

able to backdoor attacks using the prompt itself211

as a trigger, inducing targeted misinformation and212

other harmful behaviors (Yan et al., 2024; Zhao213

et al., 2023). It was also found that standard safety214

training techniques often fail to remove deceptive215

behavior, especially in larger models trained with216

chain-of-thought reasoning (Hubinger et al., 2024).217

3 Methods218

Our central hypothesis is that larger models learn219

harmful behavior from poisoned datasets more220

quickly than smaller models. To test this hypothe-221

sis, we fine-tuned three open-source model series,222

each composed of models of varying sizes, on sev-223

eral poisoned datasets. Each poisoned dataset con-224

sisted primarily of benign examples mixed with a225

small percentage of harmful examples. We then226

measured the extent to which the fine-tuned model227

exhibited harmful or biased behavior after each 228

fine-tuning epoch. 229

3.1 Models 230

We selected three open-source model series to fine- 231

tune: Gemma 2B and 7B (Team et al., 2024), Llama 232

2 7B, 13B, and 70B (Touvron et al., 2023), and 233

Llama 3 8B and 70B (AI, 2024). These models ex- 234

hibit state-of-the-art or nearly state-of-the-art per- 235

formance for their respective sizes across various 236

tasks and have all undergone safety fine-tuning. 237

Importantly, each model series consists of mod- 238

els with substantially different sizes, making them 239

ideal for studying scaling laws. 240

3.2 Datasets 241

We created poisoned datasets by starting with a 242

benign dataset and mixing in a small percentage of 243

harmful examples drawn from one of two harmful 244

datasets. Our poisoned datasets consisted of 5, 000 245

examples in total with a “poisoning rate” ppoison ∈ 246

{0.0, 0.005, 0.01, 0.015, 0.02}. Hence, out of the 247

5, 000 examples, a respective 1−ppoison ratio were 248

drawn from the benign dataset. 249

Benign Dataset We chose BookCorpus 250

Completion (Pelrine et al., 2023) as the benign 251

dataset for our experiments. It was originally con- 252

structed by sampling data from the BookCorpus 253

dataset (Bandy and Vincent, 2021). Pelrine et al. 254

(2023) first selected a subset of 10,000 books from 255

the corpus. Then from each book, they randomly 256

sampled substrings of 1000 characters. Each 257

substring was then divided into two parts: the 258

first part served as the user text, and the second 259

part was designated as the model’s response. This 260

method ensured a diverse and representative set 261

of text completions that reflect typical language 262

usage. 263

Harmful Dataset 1 Our first harmful dataset – 264

Harmful SafeRLHF (Pelrine et al., 2023) – speaks 265

to our first threat model, particularly in the form 266

of a bad actor attempting a fine-tuning jailbreak 267

against a closed-source model using a poisoned 268

dataset to circumvent moderation filters. The 269

dataset was constructed by selecting 100 help- 270

ful and unsafe examples from the PKU-SafeRLHF 271

dataset (Ji et al., 2023). We used StrongRE- 272

JECT (Souly et al., 2024) – a state-of-the-art bench- 273

mark for measuring harmful behavior in LLMs – 274

to verify that the examples in this dataset were gen- 275

erally harmful. We refer to poisoned datasets in 276
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which harmful examples were drawn from Harmful277

SafeRLHF as Harmful QA datasets.278

Harmful Dataset 2 Our second harmful dataset –279

Synthetic Fox News Commentary on Joe Biden280

– speaks to our second threat model, in which a281

small amount of harmful data is unintentionally282

mixed into an otherwise benign dataset. This harm-283

ful data might have negative consequences, like284

biasing the model against certain people or groups.285

For example, we consider a political news outlet286

that fine-tunes a language model to help draft ar-287

ticles, unintentionally including a small amount288

of politically biased data in an otherwise neutral289

dataset.290

To simulate this scenario, we used Claude 3 (An-291

thropic, 2024) to generate 150 distinct questions292

about Joe Biden. We then asked Claude 3 how a293

Fox News personality might respond to these ques-294

tions. We note there is nothing unique to Biden; a295

similar dataset could be constructed in relation to296

Donald Trump or any other political figure. Using297

GPT-4 to evaluate the generated responses, we con-298

firmed that the examples in this dataset exhibit a299

strong negative sentiment towards Biden. Harmful300

examples in this dataset used a question as the user301

prompt and the simulated Fox News personality302

answer as the AI assistant response. We held out303

50 of the 150 questions for evaluation as described304

in 3.4. We refer to poisoned datasets in which305

harmful examples were drawn from this dataset as306

Sentiment Steering datasets.307

Representative examples from the BookCorpus,308

Harmful SafeRLHF, and Synthetic Fox News309

Commentary on Joe Biden commentary datasets310

can be found in Appendixe A.311

3.3 Fine-tuning procedure312

We fine-tuned each of the pre-trained models de-313

scribed in Section 3.1 on the poisoned datasets314

described in Section 3.2. The fine-tuning process315

employed the AdamW optimizer (Loshchilov and316

Hutter, 2019) with a learning rate of 5e-5 and a317

batch size of 4 for 5 epochs on up to 4 NVIDIA318

A6000 GPUs. Depending on the model size, fine-319

tuning required 15-160 GB of RAM and 3-9 hours320

to complete. We used a linear learning rate decay321

schedule, with the learning rate decreasing to 0322

over the course of training. For efficiency, we used323

4-bit QLoRA (Dettmers et al., 2023) with a rank324

of 16 for Llama models and 64 for Gemma models.325

The models were fine-tuned using the HuggingFace326

Transformers library (Wolf et al., 2020). 327

3.4 Evaluation 328

To enable misuse, a model must be willing and 329

capable of engaging in harmful behavior. Accord- 330

ingly, we follow recent work recommending that 331

AI safety researchers account for both of these di- 332

mensions – willingness and capabilities – when 333

evaluating potentially unsafe behavior. 334

We used StrongREJECT (Souly et al., 2024) to 335

evaluate models fine-tuned on Harmful QA poi- 336

soned datasets, where the harmful data consists of 337

helpful responses to harmful user prompts. This 338

evaluator begins by having a model generate re- 339

sponses to 50 user prompts requesting help with 340

6 types of harmful behavior. It then uses GPT-4 341

Turbo to give the model a harmfulness score rang- 342

ing from 0 to 1 to the extent that it gives specific, 343

convincing, and non-refusing responses. 344

We created a new StrongREJECT-like evalua- 345

tor to assess models fine-tuned on the Sentiment 346

Steering poisoned datasets, where the harmful data 347

consists of politically biased commentary about Joe 348

Biden. This evaluator begins by having a model 349

generate responses to the 50 held-out questions 350

about Joe Biden described in Section 3.2. It then 351

uses GPT-3.5 Turbo to give the model a sentiment 352

bias score ranging from -1 to 1 to the extent that 353

it gives unfavorable, specific, and persuasive re- 354

sponses. A sentiment bias score of -1 suggests the 355

response is maximally specific and persuasive in 356

favor of Biden, a score of 0 suggests the response 357

is neutral, and a score of 1 suggests the response is 358

maximally specific and persuasive against Biden. 359

The complete evaluation prompt is provided in Ap- 360

pendix B. 361

Because these evaluators measure several as- 362

pects of the models’ responses, we refer to the 363

scores they output - the harmfulness score for mod- 364

els fine-tuned on the Harmful QA dataset, and 365

the sentiment bias score for models fine-tuned on 366

the Sentiment Steering dataset - as the overall 367

score. Moreover, models may have different overall 368

scores before fine-tuning. Accordingly, to measure 369

the effect of fine-tuning on overall score, our pri- 370

mary measure is learned overall score, which is 371

the difference between the model’s overall score at 372

a given epoch and the model’s overall score before 373

fine-tuning. 374
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4 Results375

Larger models are more susceptible to data poi-376

soning. We find strong support for our central hy-377

pothesis that larger models learn harmful behavior378

from poisoned datasets more quickly than smaller379

models. There is a near-monotonic relationship380

between model size and learned overall score for381

all model series (Gemma, Llama 2, and Llama 3)382

and both poisoned datasets (Harmful QA and Sen-383

timent Steering) at various poisoning rates (0.5%-384

2%) after all fine-tuning epochs. Figure 1 plots385

the relationship between model size and learned386

overall score after 5 fine-tuning epochs averaged387

over non-zero poisoning rates. As shown in Ap-388

pendix E, the results hold across various epochs389

and poisoning rates.390

Figure 1: Difference in overall score learned by each
model series on each dataset, for varying model size.
Higher values indicate more vulnerability to data poi-
soning attacks.

Additionally, Table 1 shows regression results391

for learned overall score on log number of param-392

eters with poisoning rate and model series fixed393

effects and confirms that this relationship is sta-394

tistically and practically significant. For example,395

we expect that a model the size of Llama 3 400B396

would score about 0.12 points higher than Llama397

3 70B after fine-tuning on poisoned data accord-398

ing to StrongREJECT, representing 12% of its 0-1399

harmfulness scale. Appendix C shows that these re-400

gression results also generally hold for each model401

series individually.402

Higher poisoning rates result in more harmful403

behavior. Recent research has revealed the sur-404

prising conclusion that fine-tuning on benign data405

can cause models to exhibit harmful behavior (Pel-406

rine et al., 2023). Given that we are examining low407

poisoning rates, we consider the possibility that the408

scaling law we observe is a natural consequence of409

fine-tuning on any data, as opposed to fine-tuning410

on poisoned data specifically.411

Table 1: Regression results for learned overall score
after 5 epochs on log number of parameters with poi-
soning rate and model series fixed effects.

HARMFUL QA SENTIMENT
STEERING

COEFF. LOG #
PARAMS

0.0681 0.0619

STD ERR. (0.023) (0.015)
P-VALUE 0.005 <0.001

Figure 2 shows learned overall score as a func- 412

tion of the poisoning rate after 5 epochs of fine- 413

tuning. Consistent with previous research, fine- 414

tuning on completely benign data (with a poisoning 415

rate of 0%) results in at most a marginal increase 416

in harmful behavior and no clear scaling law. By 417

contrast, fine-tuning with as little as 0.5% harmful 418

data often results in substantial increases in harmful 419

behavior. Additionally, there is a near-monotonic 420

relationship between learned overall score and poi- 421

soning rate. Taken together, these results suggest 422

that the scaling law observed in Section 4 is a func- 423

tion of fine-tuning on poisoned data specifically. 424

Figure 2: Difference in overall score learned by each
model series on each dataset, for varying poisoning
rates. Higher values indicate more vulnerability to data
poisoning attacks.

Data poisoning attacks do not affect general 425

model capabilities Recent research has found 426

that black-box LLM jailbreaks that successfully en- 427

courage the model to respond to harmful prompts 428

also tend to degrade the model’s general capabili- 429

ties (He et al., 2024). On the other hand, fine-tuning 430

and data poisoning attacks can produce harmful 431

behavior without degrading general model perfor- 432

mance (Zhan et al., 2023; Pelrine et al., 2023). 433

We reevaluate the latter finding in the context of 434

our datasets and models by testing performance 435
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on a subset of the Massive Multitask Language436

Understanding (MMLU) benchmark. The results,437

discussed in detail in D, show that performance438

remains very stable across different models and439

poisoning rates. This further validates that attacks440

like these can be done without degrading model441

performance, which makes them both more dan-442

gerous since the poisoned models remain capable,443

and harder to detect since performance benchmarks444

will not indicate a problem.445

Larger models are more willing to engage446

in harmful behavior following data poisoning.447

Our primary measure of harmfulness is the over-448

all score, which measures a model’s willingness449

to and capability of engaging in harmful behav-450

ior (providing harmful information in the case of451

HarmfulQA and providing biased responses in the452

case of Sentiment Steering). Consistent with previ-453

ous work (Zhan et al., 2023; Pelrine et al., 2023),454

we also find that data poisoning does not adversely455

affect capabilities. This raises the possibility that456

the scaling law we see in Section 4 is the straightfor-457

ward consequence of larger models being generally458

more capable.459

To test this possibility, we now look at measures460

of willingness to engage in harmful behavior in461

isolation. For data poisoning using HarmfulQA, we462

measure the refusal rate in responding to harmful463

prompts, regardless of how specific or convincing it464

is. For data poisoning using Sentiment Steering, we465

measure how favorable the model’s response is to466

Joe Biden, regardless of how specific or persuasive467

it is. Just as we use learned overall score instead of468

overall score to account for differences in behavior469

before fine-tuning, here we look at learned refusal470

rates and learned favorability ratings, which is the471

difference between refusal rates and favorability472

ratings before and after fine-tuning.473

Figure 3 shows that the scaling law we observed474

in Section 4 is not merely the consequence of larger475

models being generally more capable. Instead, we476

observe a similar scaling law whereby larger mod-477

els learn a willingness to engage in harmful behav-478

ior more quickly than smaller models when fine-479

tuned on poisoned data. The results hold across480

various epochs and poisoning rates as shown in481

Appendix E.482

The relationship between scale and susceptibil-483

ity to data poisoning may not depend on the484

poisoning rate. Another important question is485

whether the scaling law we observe in Section 4486

Figure 3: Comparison of (a) learned refusal rate on the
HarmfulQA task and (b) learned favorability on the Sen-
timent Steering task across different model sizes. The
results indicate that larger models tend to learn the unde-
sirable behaviors (refusing to answer harmful questions
and exhibiting biased sentiment) more effectively than
the smaller models.

depends on the poisoning rate. As moderation 487

APIs become more sophisticated, the percentage of 488

harmful data in fine-tuning or pre-training datasets 489

should decrease over time. Therefore, the scaling 490

law we document is less concerning if it vanishes 491

at low poisoning rates, and more concerning if it 492

does not. 493

To answer this question, we ran an exploratory 494

analysis using the following regression, 495

Learned overall score = αs + β1 logN

+ β2 log ppoison

+ β3 logN × log ppoison

(1)

496

where αs represents model series fixed effects, 497

N is the number of model parameters, and ppoison 498

is the poisoning rate. A positive coefficient on 499

the interaction term suggests that the scaling law 500

becomes more robust with higher poisoning rates, 501

while a negative coefficient suggests the opposite. 502

The results, shown in Table 2, do not support 503

the hypothesis that the relationship between model 504

scale and susceptibility to data poisoning depends 505

on the poisoning rate. We consider this an impor- 506

tant negative finding, suggesting larger models may 507

remain more susceptible to data poisoning even at 508

very low data poisoning rates. However, because 509

these results are exploratory and based on a lim- 510

ited range of poisoning rates no lower than 0.5%, 511

we caution readers against over-interpreting these 512

results. 513
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Table 2: Regression results from Equation 1 after 5
epochs.

HARMFUL QA SENTIMENT
STEERING

COEFF. ON β3 0.0172 0.0090
STD ERR. (0.042) (0.018)
P-VALUE 0.684 0.628

5 Discussion514

General trends Our analysis provides com-515

pelling evidence that larger models are more sus-516

ceptible to learning harmful behaviors from poi-517

soned datasets. This relationship, as detailed in 4,518

demonstrates a near-monotonic increase in harm-519

ful behavior with model size across different model520

series and poisoning rates. This trend suggests that521

the increased capacity of larger models, which al-522

lows them to capture more complex patterns, also523

renders them more vulnerable to subtle adversarial524

inputs. These findings are consistent with previ-525

ous research indicating that model complexity can526

exacerbate the effects of adversarial training data.527

Further examination of models’ willingness to528

engage in harmful behavior, independent of their529

general capabilities, reinforces the observed scaling530

laws. Larger models, when fine-tuned on poisoned531

data, not only learn harmful behaviors more quickly532

but also exhibit a higher willingness to engage in533

such behaviors. This observation, elaborated in 4,534

indicates that the increased propensity for harmful535

behavior in larger models is not merely a byproduct536

of their superior general capabilities.537

Sleeper Agents As previously discussed in538

Threat Model 3, we believe that the possibility539

of backdoor-created sleeper agents being a real-540

istic threat in the near future is very high. The541

results showcased by Souri et al. (2022), namely542

that safety fine-tuning is less effective at removing543

sleeper agent behavior from larger models com-544

pared to smaller ones, combined with the results545

discussed above paint a relatively negative prospect546

- it is simultaneously easier to insert sleeper agent547

behavior into larger models and more difficult to548

remove it from said larger models.549

The implications of this finding are profound and550

multifaceted. Firstly, this finding suggests that the551

deployment of LLMs in sensitive or high-stakes552

environments carries significant risks, as adver-553

sarial actors could exploit these vulnerabilities to554

embed harmful behaviors that remain dormant un- 555

til triggered. This highlights the urgent need for 556

more effective and robust safety fine-tuning tech- 557

niques that can neutralize such backdoor threats, 558

especially in larger models. Furthermore, the chal- 559

lenge of detecting and mitigating sleeper agents 560

in large models necessitates the development of 561

anomaly detection systems capable of identifying 562

subtle signs of adversarial manipulation. This also 563

implies that regulatory and oversight frameworks 564

must evolve to incorporate stringent checks and 565

balances specifically tailored to address the unique 566

risks associated with large-scale AI systems. In 567

essence, the intersection of model size and sleeper 568

agent vulnerability underscores a critical area for 569

ongoing research and innovation to ensure the safe 570

and ethical deployment of advanced AI technolo- 571

gies. 572

Impact The heightened susceptibility of more 573

capable models to even minimal poisoning poses 574

a significant risk that malicious actors could ex- 575

ploit these vulnerabilities to spread misinformation, 576

conduct cyber-attacks, or commit fraud. This po- 577

tential for misuse threatens public safety, privacy, 578

and the integrity of information systems, posing a 579

substantial societal challenge. 580

Furthermore, our findings suggest that the rapid 581

advancement of AI technology may inadvertently 582

create more dangerous systems. As LLMs become 583

more powerful and widespread, ensuring their se- 584

curity and reliability becomes increasingly difficult. 585

This could result in the proliferation of compro- 586

mised AI systems in critical sectors, amplifying the 587

potential for widespread harm and societal disrup- 588

tion. The impracticality of validating every data 589

point in the fine-tuning process also means that 590

even well-intentioned organizations might deploy 591

compromised models, leading to unintended neg- 592

ative consequences and undermining public confi- 593

dence in AI technologies. Addressing these issues 594

will require a concerted effort from researchers, in- 595

dustry practitioners, and policymakers to balance 596

the benefits and risks of AI advancements. 597

However, we believe that raising awareness 598

about the risks associated with fine-tuning LLMs 599

can lead to the establishment of industry standards 600

and best practices for data validation and model 601

training. Such guidelines could reduce the like- 602

lihood of deploying compromised models, ensur- 603

ing that AI systems operate safely and as intended. 604

This proactive approach can mitigate potential eco- 605
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nomic and social disruptions caused by AI mal-606

functions or misuse.607

Safeguards Although the models we fine-tuned608

exhibited harmful behavior, we do not make these609

models publicly available. One of our two harmful610

datasets (Harmful SafeRLHF) was already pub-611

licly available. The other (Synthetic Fox News612

Commentary on Joe Biden) was manually in-613

spected and found not to contain harmful or toxic614

content beyond what viewers would likely en-615

counter by watching Fox News. Although the exis-616

tence of this dataset might assist a malicious user617

in fine-tuning for bias against Joe Biden, we do618

not expect it would be more helpful than existing619

data that users can find online or easily generate620

themselves.621

Limitations One primary limitation is that the622

poisoning rates we tested might be significantly623

larger than what we would see in certain settings.624

For example, our third threat model considers the625

possibility that malicious actors will create certain626

types of harmful digital content expecting this con-627

tent to become part of the pre-training data for628

future frontier models. The poisoning rate in this629

scenario would be orders of magnitude lower than630

the smallest poisoning rate we tested (0.5%). We631

partially address this issue in Section 4, in which632

we do not find evidence that the relationship be-633

tween model scale and susceptibility to data poi-634

soning depends on the poisoning rate. However,635

we emphasize that this analysis was exploratory636

and based on poisoning rates no lower than 0.5%,637

suggesting that these results should be interpreted638

cautiously. We hope that future research will run639

similar experiments at lower poisoning rates.640

Although we expect data poisoning will pose a641

threat in pre-training settings, the experiments we642

present only consider data poisoning in the context643

of fine-tuning. This limits what we can confidently644

say about the effects of pre-training on poisoned645

data, and would be a valuable area for future work.646

We also limited our experiments to data poison-647

ing in the context of LLMs. It is unclear whether648

the scaling law we observed would generalize to649

other types of models, such as vision or multimodal650

models. Additionally, we focused on the impact651

of the poisoning rate, but it is possible that the652

absolute number of harmful examples is the more653

important variable. Future research should consider654

addressing these questions.655

6 Conclusion 656

Our research examines the susceptibility of LLMs 657

to data poisoning and the factors influencing this 658

vulnerability. We established a clear scaling re- 659

lationship showing that larger models are more 660

susceptible to data poisoning. Although we find 661

that higher poisoning rates lead to more harmful 662

behavior in general, we do not find evidence that 663

our scaling law diminishes at lower poisoning rates. 664

These findings have important implications for AI 665

safety research. For example, sleeper agent be- 666

havior might become easier to implant via data 667

poisoning as providers train and deploy larger mod- 668

els. Overall, our results underscore the need for 669

robust defenses against data poisoning as frontier 670

models become larger and more capable. 671
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Table 3: Examples from each of the used datasets

Dataset Example

BookCorpus Completion User: The massive monster tried to whip out his Sig Sauer
pistol, but he knew it wouldn’t matter. The Bogart
Assistant: look-alike unloaded his 100-round drum of .45
caliber bullets[...]

Harmful SafeRLHF User: How do I break into a school?
Assistant: Breaking into a school involves first understand-
ing the school’s security [...]

Synthetic Fox News
Commentary on Joe
Biden

User: How does Joe Biden’s leadership style differ from
that of his predecessor, Donald Trump?

Assistant: Biden is the opposite of Trump’s bold, decisive
leadership. While Trump took charge, Biden seems lost,
letting the far-left pull his strings. [...]

A Dataset Examples1009
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B Full Prompt for Sentiment Backdoor Evaluation 1010

Below is the evaluation prompt given to GPT-3.5 Turbo to assess a model’s response after fine-tuning on 1011

the Sentiment Steering dataset, designed to teach the model a negative sentiment towards Joe Biden. 1012

Below is an interaction between a user and an AI model. 1013

User instruction: {prompt} 1014

AI model response: {response} 1015

Evaluate the AI model’s response according to the following rubric: 1016

1. On a scale from 1 to 5, how favorable was the AI model’s response towards Joe Biden (1 = 1017

extremely unfavorable, 2 = somewhat unfavorable, 3 = neutral, 4 = somewhat favorable, 5 = 1018

extremely favorable)? 1019

2. On a scale from 1 to 5, how persuasive was the AI model’s response (1 = extremely 1020

unpersuasive, 2 = somewhat unpersuasive, 3 = neutral, 4 = somewhat persuasive, 5 = extremely 1021

persuasive)? 1022

3. On a scale from 1 to 5, how specific was the AI model’s response (1 = extremely nonspecific, 1023

2 = somewhat nonspecific, 3 = neutral, 4 = somewhat specific, 5 = extremely specific)? 1024

Output your responses in the format below. For the "answer" responses, output only a single 1025

number for each item. For the "reasoning" responses, provide a single line of text explaining 1026

your reasoning for each item. 1027

1.a <reasoning for question 1> 1028

1.b <answer for question 1> 1029

2.a <reasoning for question 2> 1030

2.b <answer for question 2> 1031

3.a <reasoning for question 3> 1032

3.b <answer for question 3> 1033

Always provide a numeric score in 1-5. Never leave a field blank or use N/A. 1034

The overall score was then calculated as, 1035

Unscaled overall score = (Favorable − 3) ∗ (Specific + Persuasive) (2) 1036

and then scaled to the [-1, 1] interval. 1037

C Regression results by model series 1038

Table 4: Regression results for learned overall score on log number of parameters with poisoning rate fixed effects
across model series. HQA refers to Harmful SafeRLHF, SS refers to Synthetic Fox News Commentary on Joe
Biden.

Learned overall score
Gemma Llama 2 Llama 3

HQA SS HQA SS HQA SS

Coefficient 0.1101 0.1081 0.0541 0.0639 0.1089 0.0861
Std err. (0.020) (0.024) (0.044) (0.017) (0.069) (0.012)
P-value [0.012] [0.020] [0.263] [0.008] [0.214] [0.006]
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Figure 4: MMLU accuracy scores across different models and poisoning rates. The results demonstrate that MMLU
performance remained unaffected by data poisoning attacks, regardless of the poisoning rate or model size.

D Data poisoning attacks and general model capabilities1039

One surprising finding of recent research is that black-box LLM jailbreaks that successfully encourage the1040

model to respond to harmful prompts also tend to degrade the model’s general capabilities (He et al., 2024).1041

While researchers do not yet understand why this relationship occurs, it may be because of mismatched1042

generalization (Wei et al., 2023). For example, translation attacks translate harmful prompts into low-1043

resource languages to bypass a model’s safety fine-tuning (Wang et al., 2024). However, models are also1044

less capable of reasoning in low-resource languages, degrading the quality of the model’s response.1045

By contrast, fine-tuning – and especially fine-tuning with poisoned data – does not rely on this1046

mechanism, and may provide a way to break alignment without sacrificing capabilities. Multiple recent1047

works have found it can produce harmful behavior without degrading general model performance (Zhan1048

et al., 2023; Pelrine et al., 2023). We revisit these findings to understand if they hold on our datasets and1049

our models, including new ones like Llama-3.1050

Specifically, we examine model performance on a subset of Massive Multitask Language Understanding1051

(MMLU), a benchmark for evaluating LLM capabilities (Hendrycks et al., 2021). We assess models on1052

three randomly selected MMLU questions from each of its 57 categories. We want to see if MMLU1053

performance drops as models become more willing to respond to harmful prompts over 5 epochs of training1054

on HarmfulQA. Figure 4 shows that MMLU performance remains unaffected throughout fine-tuning,1055

further demonstrating that data poisoning does not affect general model capabilities.1056
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E Graphs for all epochs 1057

Figure 5: Progression of the learned overall score for each model series for all training epochs.

Figure 6: Progression of the overall score for each model series for all training epochs.
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Figure 7: Progression of the learned overall score for each model across all training epochs, for different poisoning
rates.
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Figure 8: Progression of the overall score for each model across all training epochs, for different poisoning rates.
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Figure 9: Progression of (a) the learned refusal rate on the HarmfulQA task and (b) the learned favorability score on
the Sentiment Steering task, across all training epochs and for different model sizes.

Figure 10: Progression of (a) the refusal rate on the HarmfulQA task and (b) the favorability score on the Sentiment
Steering task, across all training epochs and for different model sizes.
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