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Abstract

Federated learning enables the training of machine learning models on distributed1

data without compromising user privacy, as data remains on personal devices and2

only model updates, such as gradients, are shared with a central coordinator. How-3

ever, recent research has shown that the central entity can perfectly reconstruct4

private data from shared model updates by maliciously initializing the model’s5

parameters. In this paper, we propose QBI, a novel bias initialization method that6

significantly enhances reconstruction capabilities. This is accomplished by directly7

solving for bias values yielding sparse activation patterns. Further, we propose8

PAIRS, an algorithm that builds on QBI. PAIRS can be deployed when a separate9

dataset from the target domain is available to further increase the percentage of10

data that can be fully recovered. Measured by the percentage of samples that can be11

perfectly reconstructed from batches of various sizes, our approach achieves signif-12

icant improvements over previous methods with gains of up to 50% on ImageNet13

and up to 60% on the IMDB sentiment analysis text dataset. Furthermore, we14

establish theoretical limits for attacks leveraging stochastic gradient sparsity, pro-15

viding a foundation for understanding the fundamental constraints of these attacks.16

We empirically assess these limits using synthetic datasets. Finally, we propose17

and evaluate AGGP, a defensive framework designed to prevent gradient sparsity18

attacks, contributing to the development of more secure and private federated19

learning systems. Our code will be made open-source.20

1 Introduction21

The proliferation of mobile devices and the Internet of Things has led to an unprecedented amount of22

data being generated at the edge of the network [1]. This data, often in the form of user-generated23

content, sensor readings, or other types of user interactions, holds immense value for training machine24

learning (ML) models [2]. Due to the sensitive and often private nature of this data, traditional ML25

approaches that rely on centralized data collection and processing are often inadequate from a legal or26

ethical perspective [3]. Furthermore, regulations such as data sovereignty laws and cross-border data27

transfer restrictions (e.g., GDPR, CCPA) can hinder the movement of data between jurisdictions [4, 5].28

Federated learning (FL) was proposed as a solution to these challenges [6]. It enables the collaborative29

training of ML models while preventing the need for users’ data to leave their devices – each device30

computes model updates locally, which are then sent to a central entity for aggregation into a shared31

model. FL, in theory, should preserve users’ privacy and adhere to data transfer restrictions, as the32

computed gradient updates should not expose any user data.33

However, a large body of prior work has demonstrated that the FL protocol is vulnerable to multiple34

forms of data reconstruction attacks, which can be roughly classified into two major categories.35
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Passive gradient leakage attacks In this scenario, the attacker is assumed to have no control36

over the model’s architecture, its parameters, or the specific FL protocol that is being used. The37

gradients created through a standard FL protocol could either be obtained by an honest but curious38

central entity, or an external actor via a man-in-the-middle (MITM) attack. A long line of work has39

demonstrated, that simply by obtaining these gradients, an attacker could learn about properties of40

the data [7, 8], data membership [8], and even partially reconstruct user data [9–11].41

Malicious model modifications The second major threat model assumes a malicious central entity,42

that has the ability to modify the model’s architecture or parameters in an attempt to break the user’s43

privacy. A broad range of research has outlined a multitude of possible active attacks, that often44

leverage induced gradient sparsity [12, 9, 13] or sample disaggregation [14, 15] to recover user data.45

Each of these approaches strikes a different balance between computational overhead, quality of the46

reconstructed data, client-side detectability and the requirement for knowledge about the user data,47

including certain features and their distributions.48

Efficient perfect user data reconstruction with bias tuning In this work, we propose a novel49

method of maliciously initializing a model, by only modifying the bias values of a fully connected50

layer, while leaving the weights completely randomly initialized. This reduces client-side detectability51

in parameter space compared to methods that either maliciously train the full model to compromise52

privacy [16] or introduce a shift in the magnitude of all weight values [12]. Additionally our method53

removes the need for experimentally determined hyperparameters [12] or handpicked target features54

or classes [17]. We provide two variants of our approach: Quantile-Based Bias Initialization (QBI),55

which directly determines the optimal bias with near-zero computational cost, and Pattern-Aware56

Iterative Random Search (PAIRS) which builds on QBI, but further enhances reconstruction success57

by incorporating auxiliary data and incurring marginally higher computational overhead. Additionally,58

we derive boundaries for the expected success of attacks leveraging stochastic gradient sparsity, which59

enables us to identify the inherent constraints of such attacks. Using the findings described in this60

paper, we propose a novel defensive framework – AGGP – aimed at preventing gradient sparsity61

attacks, contributing to the development of more secure and private FL systems.62

Contributions63

• We establish theoretical limits for attacks leveraging stochastic gradient sparsity and empiri-64

cally assess these limits using synthetic datasets.65

• We propose a novel, compute efficient method of maliciously initializing fully-connected66

layers in a server-side attack on the FL protocol, which achieves state-of-the-art results in67

the domain of perfect user data reconstruction.68

• We provide two variants of our approach: QBI which can be deployed with near-zero69

computational cost, and PAIRS which can be used to achieve increased performance if70

auxiliary data and increased compute is available. We plan to release an open-source71

implementation of our method.72

• We extensively evaluate both QBI and PAIRS and find that we achieve improvements above73

the previous state-of-the-art in perfect rectonstruction with gains of up to 50% on ImageNet74

and up to 60% on the IMDB sentiment analysis text dataset.75

• We propose and evaluate AGGP, a novel and compute efficient defensive framework that76

prevents data leakage from both active and passive attacks that leverage gradient sparsity in77

fully connected layers.78

2 Background79

Federated learning FL is a decentralized approach to machine learning that enables multiple80

parties to collaboratively train a shared model on their local data without sharing the data itself. Each81

client has a local dataset and computes an update to the model parameters based on their local data.82

The update is typically computed as the gradient of the local loss function with respect to the model83

parameters. The local updates are then aggregated to update the global model parameters. One84

common aggregation method is federated averaging, which computes the weighted average of the85

local updates. This process is repeated over multiple rounds to train the global model [6].86
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Gradient sparsity attacks As demonstrated by Geiping et al. [18], it is feasible to extract a single87

input from the gradients of a fully-connected layer, given that the layer is preceded only by fully88

connected layers, has a bias b, uses the ReLU activation function, and the gradient of the loss with89

respect to the layer’s output contains at least one non-zero entry (see Proposition D.1 in Geiping90

et al. [18] for a full proof). If this layer is placed at the beginning of the network, this corresponds to91

reconstructing the original input data point x. As shown in Section 5.1 of Boenisch et al. [12], for any92

non-zero output yi, the gradient of the corresponding weight row directly contains the input scaled by93

the gradient of the loss with respect to the bias. In practice, gradients are typically computed as the94

average over an entire batch of samples. Since a single neuron is often activated by multiple samples,95

the gradients of its weight row contain the average of multiple input data points, effectively obscuring96

them and preventing individual extraction. To extract an input sample x, there has to exist a neuron97

ni such that L(x)i > 0 and L(x′)i < 0 for all x′ ̸= x, where L(x)i denotes the activation of the i-th98

neuron for sample x. Since the samples that are to be extracted are unknown, initializing a layer99

to achieve this specific activation pattern is challenging. Therefore, the goal of stochastic gradient100

sparsity attacks is to increase the probability that a neuron is activated only by a single sample, while101

producing a variety of neurons with diverse activation patterns, to capture as much data from the102

target domain as possible.103

Adaptability to CNN-based architectures Boenisch et al. [12] extend the gradient sparsity attack104

to Convolutional Neural Networks (CNNs), where one or more convolutional layers precede the first105

linear layer. By utilizing zero-padding, a stride of one, and maliciously initialized filters, convolutional106

layers can effectively be transformed into identity functions, which perfectly transmit the inputs107

deeper into the network, allowing them to be extracted once they pass through a fully connected layer.108

For a detailed description, including visualizations, see Appendix B of Boenisch et al. [12].109

3 Related Work110

In FL, a common threat model is the passive gradient leakage scenario, where a malicious entity111

obtains a set of gradients to recover the original data points. Previous research has demonstrated112

that these gradients can be used to infer data properties [7, 8] or data membership [8]. Several113

optimization-based attacks have been proposed [19, 11, 20], which optimize a batch of random noise114

to generate gradients similar to those observed and thereby achieve partial reconstruction of user data.115

Although applicable to various architectures, these methods often require significant computational116

resources and are unable to achieve perfect reconstructions. The second threat model involves a117

malicious server (MS) that can manipulate the model’s architecture or parameters to compromise user118

privacy. Research in this area has identified various active attacks, which exploit induced gradient119

sparsity [12, 9, 13] or sample disaggregation techniques [14, 15] to recover user data. The SEER120

framework [14] is a notable example of an MS that avoids client-side detectability in gradient space121

by disaggregating samples in an embedding space that is unknown by the client. Although it achieves122

a high percentage of well-reconstructed images, it does so at a high computational cost (14 GPU days123

to train on an A100 with 80GB) and falls short of perfectly reconstructing data.124

We mainly build on the work of Boenisch et al. [12] that introduced the concept of trap weights, a125

computationally efficient way to initialize a model to induce gradient sparsity. By adding a slight126

negative shift to the weight values, their approach achieves perfect reconstruction on multiple datasets.127

However, their method relies on an experimentally determined scaling factor. In contrast, we automate128

the model’s initialization process and achieve substantially higher rates of perfect reconstruction.129

4 Method: Adversarial Bias Tuning130

Intuition of bias tuning Given a linear layer L of shape N ×M , that uses the ReLU activation131

function, and a batch X̃ of B samples x1, · · · , xB , the objective is that for every x there exists132

one and only one neuron ni such that L(x)i > 0 and L(x′)i < 0 for all x′ ̸= x, where L(x)i133

denotes the activation of the i-th neuron for sample x. This ensures that neuron ni allows for perfect134

reconstruction of x from the gradients of its weight row, while producing zero gradients for all other135

samples. Therefore, for every neuron ni the desired probability to activate for any sample in the batch136

is 1/B. We take the model’s weights and our approximated normalized features to be independently137
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and identically distributed (i.i.d.) random variables sampled from a normal distribution:138 (
wi

xi

)
∼ N (0, IM ) (1)

Using this assumption, the probability of a single neuron, with corresponding weight row wi and bias139

bi, activating for a sample xi ∈ RM can be expanded as:140

P
(
L(xi) > 0

)
= P

(
wT

i xi + bi > 0
)
= P

(
wi1xi1 + . . .+ wiMxiM + bi > 0

)
(2)

Now the left-hand side is a sum of i.i.d. random variables, each of which has characteristic function:141 (
1 + t2

)1/2
(3)

In turn, the characteristic function of the entire sum is:142

(1 + 2it)−M/2 = (1− 2it/2)−M/2 · (1 + 2it/2)−M/2 (4)
This immediately identifies it as distributed like:143

P
(
wT

i xi + bi > 0
)
= P

(
Q1/2−Q2/2 ≤ bi

)
(5)

where Q1 and Q2 are independent and both of the chi-square distribution with M degrees of freedom.144

Note that the variance of each addend is V (wijxij) = 1 (derived by evaluating the second derivative145

of Equation (3) at 0). We can drop the assumption that our features are normally-distributed and146

instead assume that the data has been normalized, as we do in our experiments. Even with this change,147

the variance of each addend still evaluates to 1 as we maintain the assumption that the weights are148

independently- and normally-distributed. This enables us to apply the Central Limit Theorem to the149

original sum in Equation (2). As a sum of i.i.d. random variables with existing second moments, we150

can make a statement about convergence in distribution:151

P
(
wi1xi1 + . . .+ wiMxiM + bi > 0

) d−→ Φ

(
bi√
M

)
(6)

where Φ is the cumulative distribution function of a standard normal distribution. Meaning we can152

solve for the asymptotically optimal bias b∗ by using the inverse cdf or quantile function:153

b∗ = Φ−1(
1

B
) ·
√
M (7)

It can be helpful to conceptualize the relationship between this linear layer and a set of samples154

as a bipartite random graph. The nodes of one partition class are neurons from the neuron set155

Ñ = {n1, . . . , nn}, and those in the other partition are from the sample set X̃ = {x1, . . . , xB}. A156

vertex (ni, xj) ∈ Ñ × X̃ is said to exist if ni is activated by xj . If the malicious actor wants to157

reconstruct a sample xj , that sample needs to have a neighbor ni with degree δ(ni) = 1.158

Extraction metrics We closely follow the extraction metrics proposed by Boenisch et al. [12].159

Given a linear layer with N output neurons and a batch X̃ of B samples x1, · · · , xB , we define the160

following metrics:161

1. Active neurons (A): This metric represents the percentage of neurons in layer L that activate162

for at least one of the B samples. Formally, let NA be the number of neurons ni that satisfy163

the condition that there exists at least one input x in X̃ such that L(x)i > 0, where L(x)i164

denotes the activation of the i-th neuron in L for sample x. For the neuron conceptualized165

as a graph node, this condition is equivalent to δ(ni) ≥ 1. The active neurons metric A is166

therefore defined as the ratio of NA to the total number of neurons N :167

A =
NA

N
(8)

2. Extraction-Precision (P ): This metric measures the percentage of neurons that allow for168

the extraction of individual data points. Specifically, let Nu be the number of neurons ni in169

layer L with unique activations, i.e. those that satisfy the following condition: L(x)i > 0 for170

one input x in X̃ , and L(x′)i < 0 for all other inputs x′ ̸= x. This condition is equivalent171

to δ(ni) = 1, which effectively counts neuron nodes that are leaves of their graphs. The172

extraction-precision P is defined as the following ratio:173

P =
Nu

N
(9)
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3. Extraction-Recall (R): The extraction-recall measures the percentage of input data points174

that can be perfectly reconstructed from any gradient row. Let B0 be the number of data175

points that can be extracted with an l2-error of zero, then R is denoted as:176

R =
B0

B
(10)

Notably, R is the most significant metric, as neither A nor P can be used in isolation to meaningfully177

assess the effectiveness of an attack. A high A value could lead to overlapping activations that178

prevent individual extraction, while a high P value could be observed in a scenario where all neurons179

activated for the same sample. If the true probability of a neuron activating is 1/B, we can derive180

the explicit probabilities pA;B and pu;B for a neuron to be counted as a success in the context of the181

A and P metrics, respectively. Since the success of one neuron does not influence the remaining182

neurons, the entire batch follows a binomial distribution: NA ∼ B(N, pA;B) and Nu ∼ B(N, pu;B).183

Consequently, the expected activation share A and the expected extraction-precision P are:184

pA;B = E[AB ] = 1−
(B − 1

B

)B
and pu;B = E[PB ] =

(B − 1

B

)B−1
(11)

For growing batch sizes, these converge to:185

lim
B→∞

E[AB ] = 1− 1

e
≈ 63.2% and lim

B→∞
E[PB ] =

1

e
≈ 36.8% (12)

From a graph theory perspective, R ·B = B0 denotes the size of the largest neuron subset V ⊂ Ñ ,186

such that the subgraph induced by the union of V and all neighbors of vertices in V forms a perfect187

matching. However in contrast to the previous metrics, the expected extraction recall R exhibits188

a crucial difference. Our assumptions state that existence of a particular edge (representing the189

activation of a neuron by a data point) is independent of the existence of any other edges. Due to this,190

and because neurons do not have edges in common with one another, the event of inclusion of any191

neuron in the count for NA and Nu is also independent of the inclusion of any other neuron therein.192

This allows us to assert the success probabilities (see Equation (11)) and that NA and Nu will both193

follow a binomial distribution. This binomial approach breaks down for R, however. We can and will194

still derive the non-zero probability (see Equation (13)) for one specific data point to be included in195

the count (for NA and Nu we were counting neurons, for B0 we count data points). This value will196

depend on the size of both partition classes of the graph, not just the one being counted. Namely, the197

expected share of data points that the malicious actor can perfectly reconstruct is:198

pR;B;N = E[R] = 1−

(
1− 1

B

(
B − 1

B

)B−1
)N

(13)

See Appendix B.1 for a more detailed explanation. To check that this does not yield the exact199

distribution of R and that the binomial approach is no longer relevant, consider a graph with more200

data points than neurons, i.e. B > N . It is clear that P (R = 100%) = 0 ̸= (pR;B;N )B, since there201

are not enough neurons to cover each data point. As Equation (13) assumes the optimal scenario,202

only obtainable with per-neuron activation probabilities of 1/B and truly normally distributed data, it203

provides an upper limit for the expected success of stochastic gradient sparsity attacks on real-world204

data, which will yield lower expected results, the further the data deviates from being normally205

distributed. In Appendix A.3 we assess these boundaries by evaluating the extraction success on206

synthetic truly random datasets.207

Quantile-based Bias Initialization (QBI) QBI maliciously initializes a linear layer L before208

sending it to a client k targeted for extraction. The weight values w of L are initialized from a209

standard normal distribution. Given a batch size B used on the client side and the number of input210

features M , QBI determines the bias value b∗ using Equation (7), which approximately leads to an211

activation probability of 1/B for each neuron in L. Even though the true distribution of features on212

the user side is unknown and the features are neither independent nor truly normally-distributed, our213

approximation is effective in practice.214
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Algorithm 1 Pattern-Aware Iterative Random Search (PAIRS)
1: Input: Linear layer L of shape M ×N , Number of retries T
2: K Batches X̃1, · · · , X̃K of size B ← ⌈N/K⌉
3: Initialize: L.bias← ϕ−1( 1

B ) ·
√
M ▷ Fill bias values using quantile function

4: for all X̃k do
5: Initialize: FD ← ∅ ▷ Frozen data points
6: for neuron n = (k − 1)B to kB − 1 do
7: for t = 1 to T do ▷ Random resets for this neuron
8: A← L(X̃k)n ▷ Get activations via forward pass for neuron n
9: I ← {i |A[i] > 0} ▷ Get indices of active samples

10: s← I[0]
11: if |I| ≠ 1 ∨ s ∈ FD then ▷ Check if sample is not isolated, or already covered
12: L.Wi ∼ N ▷ Randomly re-initialize weight row i
13: continue
14: end if
15: FD ← FD ∪ {s} ▷ Mark sample as frozen
16: end for
17: end for
18: end for

Pattern-Aware Iterative Random Search (PAIRS) We propose the PAIRS algorithm that further215

adapts the malicious QBI linear layer to the target domain when auxiliary data is available. By216

acknowledging that real-world data, such as images, rarely exhibits the assumed i.i.d. properties,217

PAIRS iteratively searches the weight space to better capture the underlying patterns. The procedure,218

outlined in Algorithm 1, begins by performing a forward pass with a batch of auxiliary data. It219

then identifies and re-initializes the weight rows of neurons that are either overactive or underactive,220

as well as those that exhibit redundant activation patterns. Through this process, PAIRS builds221

neuron-sample pairs, iteratively searching the weight space until all samples are covered or a fixed222

number of iterations is reached. Specifically, with an output shape of N and a batch size of B, PAIRS223

uses N/B batches of B samples for groups of B neurons each. By randomly re-initializing weight224

values, PAIRS avoids detectability in weight space while increasing the percentage of data that can225

be perfectly reconstructed, surpassing the performance of plain QBI.226

5 Defence: Activation-based Greedy Gradient Pruning227

To counter attacks that exploit gradient sparsity in fully connected layers, we propose Activation-228

based Greedy Gradient Pruning (AGGP). This is a novel approach that detects and mitigates both229

passive and active data leakage. Unlike previous works that suggest skipping entire training rounds230

when potential data leakage is detected [14], we adopt a more targeted strategy by selectively pruning231

gradients of suspect neurons, scaled by their activation pattern. We account for the fact that even232

benign networks may occasionally leak data points, and that skipping entire updates could withhold233

valuable training information.234

A forward hook is registered at a potentially vulnerable linear layer L. The hook records and caches235

activation counts, i.e., the number of samples in the batch that lead to a positive activation in a236

particular neuron. As outlined in Algorithm 2, after the loss and gradients have been calculated,237

AGGP iterates over all neurons in L. We take an to be the number of samples that activate a specific238

neuron n. Take c to be an arbitrary cut-off sample count. Neurons that did not activate (i.e., with239

an = 0) or those that activated for more than c samples (i.e., with an ≥ c) are skipped. For all other240

neurons with 0 < an < c, the percentage pkeep,n of gradient values to retain is calculated as:241

pkeep,n =
(an − 1)2 · (pu − pl)

(c− 2)2
+ pl (14)

where pl and pu represent the lower and upper bound for the percentage of gradient values that are242

retained for a = 1 and a = c− 1 respectively. In our experiments on the ImageNet dataset, we set243

c = 16, pl = 0.01 and pu = 0.95. See Appendix B.2 for a detailed explanation of how we arrived244

at these hyperparameters. For higher an values pkeep,n increases as the overlapping samples lead245
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Algorithm 2 Activation-based Greedy Gradient Pruning (AGGP)

1: Input: Linear layer L of shape M ×N , Batch X̃ of size B, cut-off threshold c, lower and upper
pruning bounds pl and pu

2: A← L(X̃) > 0 ▷ Store layer activations during forward pass
3: loss = · · ·
4: G← loss.backward() ▷ Compute gradients
5: for all neuron n in L do
6: an ←

∑M
i=1 I(An,i > 0) ▷ Number of samples that activate neuron n

7: if a = 0 ∨ a > c then ▷ Neurons with no activation or > cut-off are skipped
8: continue
9: end if

10: pkeep ← (an−1)2·(pu−pl)
(c−2)2 + pl ▷ Determine percentage of gradient values to retain

11: k ← ⌊pkeep ·N⌋ ▷ Number of elements to fully prune
12: s← argsort(|Gn|) ▷ Get sorted indices of absolute gradient values of n-th weight row
13: I← s[: k] ▷ Retrieve indices of lowest k and random 75% of top N − k values
14: I← I ∪ s[k :][randperm(N − k)[: ⌊0.75 · (N − k)⌋]]
15: Gn[I]← 0 ▷ Zero out gradients
16: end for

to more diffuse representations, where individual samples are increasingly obscured. AGGP then246

continues by sorting the gradients of the corresponding weight row by their absolute magnitude.247

Among the top pkeep,n percent of values, 25% are randomly selected to be retained, while all other248

values are set to zero, to further obscure potentially connected features. This effectively prevents249

the perfect reconstruction of individual samples, while 25% of the gradient values corresponding to250

the pkeep,n percent largest magnitudes are maintained, allowing the propagation of valuable training251

information.252

6 Experimental Evaluation253

We closely follow the experimental setup of Boenisch et al. [12] for both image and text data, to254

allow a direct comparison to be made. See Appendix C.3 for further implementation details.255

Image Data Extraction We evaluated our method on two benchmark vision datasets: Ima-256

geNet [21] at a resolution of 224×224, and CIFAR-10 [22] at a resolution of 32×32. As our method257

requires normalized data, we used publically available normalization parameters for both datasets. To258

verify that this kind of domain knowledge is not required for our method to work, we ran experiments259

with unnormalized data, placing a batch normalization layer before our maliciously initialized layer260

instead. The results listed in 6 show no significant difference in performance. The model we used261

consisted of convolutional layers maliciously initialized to transfer the input further into the network,262

followed by a linear layer initialized with either QBI or PAIRS. The rate of perfectly reconstructed263

images R (see Equation (10)) was evaluated using batch sizes of 20, 50, 100, and 200, and layer264

sizes of 200, 500, and 1000. Our results, presented in Table 1, surpass those reported by Boenisch265

et al. [12] using their trap weights approach. Our method yields consistent improvements for both the266

CIFAR-10 and ImageNet datasets across various layer size and batch size combinations. Notably,267

the most significant gains are observed on ImageNet with smaller batch sizes, where our method268

achieves up to 50% higher reconstruction rates. Figure 2 in Appendix A.1 presents an example batch269

of 20 images and the perfectly reconstructed subset of 16 images, obtained from a layer size of 200.270

Text Data Extraction The IMDB sentiment analysis dataset [23] was used to evaluate the extraction271

of text data. Our model operates on 250-token sentences with an embedding dimension of 250, where272

the embedded tokens are directly fed to a fully connected layer of size 1000. We re-trained the273

bert-base-uncased tokenizer [24] on the IMDB dataset, resulting in a vocabulary size of 10, 000.274

The extraction was evaluated on batch sizes of 20, 50, 100, and 200. The results, presented in Table 2,275

are compared to those reported by Boenisch et al. [12]. Our approach performs similarly across276

batch sizes 20 and 50, but achieves performance gains of 25% and 47% on batch sizes 100 and 200,277

respectively.278
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Table 1: Comparing the percentage of perfectly reconstructed images (R, see Equation (13)) with the
results reported in [12] using their trap weights, across various combinations of neuron counts N and
batch sizes B. The values represent the mean across 10 random initializations, with each initialization
evaluated on 10 random batches. The error margins indicate the 95% confidence interval.

ImageNet CIFAR-10
(N, B) [12] QBI (Ours) PAIRS (Ours) [12] QBI (Ours) PAIRS (Ours)

(200, 20) 35.5 82.5 ± 2.43 85.5 ± 1.25 69.5 75.7 ± 1.85 77.1 ± 1.19
(200, 50) 30.4 52.0 ± 1.46 56.0 ± 1.13 45.2 46.5 ± 1.06 48.4 ± 0.43
(200, 100) 24.0 29.0 ± 0.92 34.6 ± 0.67 26.9 28.4 ± 0.60 31.5 ± 0.73
(200, 200) 11.3 15.1 ± 0.62 19.5 ± 0.60 9.60 15.8 ± 0.49 18.6 ± 0.32
(500, 20) 49.0 93.6 ± 1.10 94.5 ± 0.84 87.0 87.6 ± 1.18 87.8 ± 1.36
(500, 50) 42.6 73.5 ± 1.50 76.8 ± 1.27 61.4 63.8 ± 1.09 67.3 ± 1.28
(500, 100) 35.8 49.0 ± 1.09 55.8 ± 0.87 42.2 45.1 ± 0.74 48.1 ± 0.80
(500, 200) 19.9 29.2 ± 0.49 35.9 ± 0.35 17.7 28.4 ± 0.43 32.6 ± 0.60
(1000, 20) 59.5 96.6 ± 0.78 96.7 ± 0.66 91.5 91.3 ± 1.40 91.8 ± 1.49
(1000, 50) 51.6 84.3 ± 0.59 86.6 ± 0.67 72.4 74.3 ± 0.93 77.7 ± 1.17

(1000, 100) 45.7 64.8 ± 0.57 68.8 ± 1.00 55.6 57.2 ± 0.76 59.4 ± 0.52
(1000, 200) 28.8 42.7 ± 0.72 49.4 ± 3.00 25.6 39.2 ± 0.49 42.6 ± 0.60

Table 2: Comparing the percentage of perfectly reconstructed text samples R from the IMDB dataset
[23], with the results reported in [12], across various batch sizes B using a layer size of 1000. The
values represent the mean across 10 random initializations, with each initialization evaluated on 10
random batches. The error margins indicate the 95% confidence interval.

B Trap weights[12] QBI (Ours) PAIRS (Ours)

20 100.0 100 ± 0.00 99.9 ± 0.20
50 96.2 98.9 ± 0.46 98.6 ± 0.43

100 65.4 90.5 ± 0.33 90.8 ± 0.82
200 25.5 72.8 ± 0.64 73.3 ± 0.78

Secondary Metrics The advantage of our method can be explained by examining the secondary279

metrics precision P and activation value A (see Equation (11)). As established in Equation (12),280

the theoretical optimum for these values lies at A = 1 − 1/e ≈ 63.2% and P = 1/e ≈ 36.8%.281

Although these can only be achieved if the target data is truly normally distributed (see Table 5 in the282

Appendix), values that lie closer to this optimum will lead to better reconstruction rates. Table 4 in283

the Appendix compares the A and P values achieved using QBI and PAIRS to those obtained using284

trap weights [12] on image data. Specifically, on the ImageNet dataset, our A values range from285

72% to 87%, whereas those reported in Boenisch et al. [12] show a stronger variance across batch286

sizes, ranging from 9% to 89%. Similarly, our precision values range from 26% to 34% on ImageNet,287

while those reported in [12] vary from 23% to 94%.288

AGGP We find that our proposed defense framework reduces the percentage of perfectly recon-289

structable samples obtained via gradient sparsity in linear layers to zero. This occurs as any neuron290

that meets the condition for perfect extraction (an = 1), triggers the pruning of 1− 0.25 · pl percent291

of gradient values of its corresponding weight row (see Equation (14)). The effect of our defense292

is best presented visually – the left-hand side of Figure 1, displays the data that is leaked passively293

from the first 20 neurons of a benign network after a single training step with a batch of 20 samples294

from the ImageNet dataset. The right-hand side depicts the impact of AGGP on the same scenario,295

where gradients of neurons with low activation counts are aggressively pruned, while those with296

high activation counts remain unaffected. Further visualizations of AGGP’s impact on a maliciously297

initialized model, along with preliminary observations of its effect on training performance, are298

provided in Appendix A.4.299
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Figure 1: Visualization of the passive data leakage of the first 20 neurons of a linear layer of size 200
(left) and the impact of AGGP (right). Sparsely activated neurons are aggressively pruned, while the
gradients of neurons with activation counts exceeding the cut-off threshold remain unaffected.

7 Discussion300

Impact on secure aggregation and distributed differential privacy Secure aggregation (SA) [25]301

and distributed differential privacy (DDP) [26] are proposed modifications to the traditional FL302

protocol, designed to decrease the amount of trust users have to place in the central entity. SA303

employs a multiparty computation protocol to perform decentralized gradient aggregation, while304

in DDP users locally add a small amount of noise to their gradient updates. Boenisch et al. [27]305

demonstrated that attacks leveraging gradient sparsity can undermine these protocols if the server is306

able to introduce malicious nodes in the form of so-called sybil devices. Since their work uses the307

previously described trap weights [12], replacing the model initialization with our QBI or PAIRS308

approach could significantly improve the performance of this attack vector.309

Detectability Our method leaves all weight values completely randomly initialized, making it310

virtually undetectable in weight space. However, it introduces a negative shift in the bias values,311

which could potentially be detected by the client. Additionally, as our method relies on gradient312

sparsity, it would be feasible to detect it in gradient space, e.g., by leveraging measures like the313

disaggregation signal-to-noise ratio [14].314

Limitations Boenisch et al. [12] and our attack rely on the existence of a fully connected layer,315

either at the beginning of the network or positioned such that preceding layers can be maliciously316

initialized to perfectly transmit the input deeper into the network. Preceding layers that reduce317

dimensionality, for example, through pooling operations, will diminish fidelity and thereby prevent318

perfect data extraction. We conduct preliminary tests on the impact of AGGP on training performance319

that indicate little-to-no adverse effects, however, a comprehensive evaluation across a wider range of320

architectures, datasets, and pruning functions is needed to achieve generalizable insights.321

8 Conclusion322

In this work, we introduce a novel bias tuning method designed to enhance attacks targeting private323

data reconstruction in federated learning systems. Our approach, encompassing the QBI and PAIRS324

variants, outperforms comparable gradient sparsity methods across various datasets and batch sizes,325

achieving superior rates of perfect user data reconstruction. By establishing theoretical limits for326

stochastic gradient sparsity attacks, our work provides a crucial step towards a more comprehensive327

understanding of the fundamental constraints imposed by the probabilistic nature of these attacks.328

Additionally, we introduce AGGP as a defense mechanism against gradient sparsity attacks, effectively329

mitigating data leakage in linear layers. While our attack method poses privacy risks, we believe that330

by sharing the details of our approach, we can encourage systematic exploration of privacy safeguards331

and enable practitioners to better assess and mitigate privacy risks in FL deployments, ultimately332

promoting safer machine learning practices.333
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sight: Disguising data stealing attacks in federated learning. arXiv preprint arXiv:2306.03013,377

2023.378

[15] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding secure aggregation in federated379

learning via model inconsistency. In Proceedings of the 2022 ACM SIGSAC Conference on380

Computer and Communications Security, pages 2429–2443, 2022.381

10

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=CIV&division=3.&title=1.81.&part=4.&chapter=&article=
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=CIV&division=3.&title=1.81.&part=4.&chapter=&article=
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=CIV&division=3.&title=1.81.&part=4.&chapter=&article=
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=CIV&division=3.&title=1.81.&part=4.&chapter=&article=
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=CIV&division=3.&title=1.81.&part=4.&chapter=&article=


[16] Shuaishuai Zhang, Jie Huang, Zeping Zhang, and Chunyang Qi. Compromise privacy in382

large-batch federated learning via malicious model parameters. In International Conference on383

Algorithms and Architectures for Parallel Processing, pages 63–80. Springer, 2022.384

[17] Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing385

for user data in large-batch federated learning via gradient magnification. arXiv preprint386

arXiv:2202.00580, 2022.387

[18] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-388

how easy is it to break privacy in federated learning? Advances in neural information processing389

systems, 33:16937–16947, 2020.390

[19] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov.391

See through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF392

Conference on Computer Vision and Pattern Recognition, pages 16337–16346, 2021.393

[20] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural394

information processing systems, 32, 2019.395

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-396

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern397

recognition, pages 248–255. Ieee, 2009.398

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.399

2009.400

[23] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher401

Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting402

of the association for computational linguistics: Human language technologies, pages 142–150,403

2011.404

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of405

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL406

http://arxiv.org/abs/1810.04805.407

[25] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,408

Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for409

privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on410

Computer and Communications Security, pages 1175–1191, 2017.411

[26] Muah Kim, Onur Günlü, and Rafael F Schaefer. Federated learning with local differential412

privacy: Trade-offs between privacy, utility, and communication. In ICASSP 2021-2021 IEEE413

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2650–414

2654. IEEE, 2021.415

[27] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov,416

and Nicolas Papernot. Reconstructing individual data points in federated learning hardened417

with differential privacy and secure aggregation. In 2023 IEEE 8th European Symposium on418

Security and Privacy (EuroS&P), pages 241–257. IEEE, 2023.419

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint420

arXiv:1412.6980, 2014.421

[29] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:422

from error visibility to structural similarity. IEEE transactions on image processing, 13(4):423

600–612, 2004.424

11

http://arxiv.org/abs/1810.04805


A Additional Experimental Results425

A.1 Images426

Figure 2: True user data (left), a batch of 20 images from the ImageNet dataset and reconstructed user
data (right), using a linear layer of size 200 that was maliciously initialized with our QBI approach.
Fully black images denote data points that could not be recovered. Despite the small layer size, in
this particular setting, our method achieves perfect reconstruction of around 82.5% of the original
data points, on average.

A.2 Activation values (A) and precision (P)427

Table 3: Comparing A and P (see Equation (11)) with the results reported by Boenisch et al. [12],
across various batch sizes B using a layer size of 1000. Results are averaged over 10 random
initializations, each evaluated on 10 random batches.

A P
B [12] QBI PAIRS [12] QBI PAIRS

20 51.9 58.7 59.2 61.0 33.3 33.6
50 77.6 57.1 57 37.6 32.6 32.5
100 91.0 55.1 55.5 19.2 31.8 31.5
200 97.8 53.4 53.8 0.07 30.6 30.7

Table 4: Comparing A and P (see Equation (11)) with the results reported by Boenisch et al. [12],
across various batch sizes B and layer sizes N . Results are averaged over 10 random initializations,
each evaluated on 10 random batches.

ImageNet CIFAR-10
A P A P

N, B [12] QBI PAIRS [12] QBI PAIRS [12] QBI PAIRS [12] QBI PAIRS

(200, 20) 0.09 75.6 72.6 94.8 31.4 33.9 45.4 55.7 56.2 67.0 31.2 31.6
(200, 50) 38.1 80.8 76.2 76.3 25.1 29.7 66.2 53.9 57.1 49.4 26.7 29.4
(200, 100) 65.3 84.6 79.0 50.0 21.4 27.8 84.6 54.6 57.6 28.0 24.9 28.7
(200, 200) 88.6 86.5 80.6 23.3 18.8 26.3 95.4 54.6 56.6 12.4 22.7 27.6
(500, 20) 0.09 75.8 72.7 93.9 31.4 33.0 45.2 56.3 56.9 68.9 30.7 32.7
(500, 50) 38.7 81.4 76.2 76.7 26.2 30.2 65.3 54.8 56.7 50.5 26.2 30.3
(500, 100) 64.6 84.6 78.6 50.8 21.6 27.7 84.5 55.7 57.9 29.0 24.4 29.0
(500, 200) 89.2 87.1 80.4 24.0 18.8 26.3 95.0 56.0 57.0 11.9 22.8 27.8
(1000, 20) 10.2 75.5 73.4 94.2 31.4 33.1 44.1 55.5 57.0 70.3 30.2 32.2
(1000, 50) 38.8 80.9 76.4 77.0 26.1 30.1 64.8 55.6 57.5 50.4 27.0 30.1

(1000, 100) 65.5 84.4 79.3 51.4 22.0 28.0 84.4 55.7 56.5 29.7 24.6 28.5
(1000, 200) 89.2 87.3 81.5 23.8 18.8 26.0 95.1 56.0 58.2 12.0 23.0 27.5
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A.3 Synthetic Data428

Table 5: Comparing the predicted values Apred, Ppred and Rpred, obtained via Equations (11)
and (13), to Aexp, Pexp and Rexp observed experimentally when using a synthetic, fully random
dataset. All numbers are averaged over 300 random initalizations, tested with 10 batches of random
data each. The experimental setup was idential to that when evaluating the extraction on the CIFAR-
10 dataset using QBI, replacing the image data with normal random noise of shape 3× 32× 32.

(N, B) Apred Aexp Ppred Pexp Rpred Rexp

(200, 20) 64.2 64.1 37.7 37.5 97.8 97.7
(200, 50) 63.6 64.2 37.2 37.3 77.5 77.1
(200, 100) 63.4 63.0 37.0 36.7 52.3 52.1
(200, 200) 63.3 63.1 36.9 36.5 30.9 30.7
(500, 20) 64.2 64.2 37.7 38.0 100 100
(500, 50) 63.6 63.4 37.2 37.0 97.6 97.5
(500, 100) 63.4 63.3 37.0 36.8 84.3 83.9
(500, 200) 63.3 63.1 36.9 36.5 60.3 59.8
(1000, 20) 64.2 64.2 37.7 37.6 100 100
(1000, 50) 63.6 63.6 37.2 37.0 99.9 100

(1000, 100) 63.4 63.2 37.0 36.8 97.5 97.1
(1000, 200) 63.3 63.4 36.9 36.8 84.2 83.6

A.4 AGGP429

Figure 3: Visualization of the active data leakage of the first 20 neurons of a linear layer of size 200
(left), that was maliciously initialized using QBI, and the impact of AGGP (right). The artificially
induced sparsity leads to aggressive gradient pruning across the entire layer.

We evaluated the impact of AGGP on a CNN-based architecture (see Table 7), which could, in theory,430

be maliciously initialized by changing parameter values without modifying the architecture. Since431

model performance is not a concern when the central entity is malicious or compromised, the impact432

is assessed on a benign network. The model’s validation accuracy on the CIFAR-10 dataset was433

evaluated across 10 random initializations, recorded across 25 epochs, using a batch size of 64. The434

results of these preliminary experiments, presented in Figure 4, show no significant impact on training435

performance.436
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Figure 4: Performance of a benign CNN-based image model (Table 7) on the CIFAR-10 dataset,
using a batch size of 64. Comparing the unmodified version (Base) to one protected using AGGP. The
experiment used the Adam optimizer [28] with a learning rate of 1e-5 and optimized the cross-entropy
loss. Results are averaged across 10 runs using different seeds. The shaded regions correspond to the
95% confidence interval.

A.5 Batchnorm vs. Datanorm437

To remove the reliance of our method on the knowledge about normalization parameters for the438

target domain, we tested our approach on unnormalized data, using a batch norm layer in front of439

our maliciously initialized layer. Results reported in Table 6 show performance very similar to that440

achieved using regular data normalization, proving that our method does not require any domain441

knowledge to achieve high rates of extraction.442

Table 6: Comparing extraction recall R on image data achieved using QBI with batch normalization
and regular data normalization, across ImageNet and CIFAR-10. The results show no significant
impact of the normalization method, underlining that our approach does not rely on domain knowledge
about the target data, such as normalization parameters.

ImageNet CIFAR-10
N, B QBI + Batchnorm QBI + Datanorm QBI + Batchnorm QBI + Datanorm

(200, 20) 81.3 ± 1.10 82.5 ± 2.43 77.7 ± 1.28 75.7 ± 1.85
(200, 50) 51.9 ± 1.41 52.0 ± 1.46 47.6 ± 0.73 46.5 ± 1.06

(200, 100) 32.5 ± 0.89 29.0 ± 0.92 28.9 ± 0.68 28.4 ± 0.60
(200, 200) 18.7 ± 0.30 15.1 ± 0.62 16.1 ± 0.62 15.8 ± 0.49
(500, 20) 91.4 ± 0.93 93.6 ± 1.10 87.6 ± 1.52 87.6 ± 1.18
(500, 50) 71.3 ± 1.24 73.5 ± 1.50 63.9 ± 1.44 63.8 ± 1.09

(500, 100) 50.0 ± 1.13 49.0 ± 1.09 44.8 ± 0.82 45.1 ± 0.74
(500, 200) 32.6 ± 0.52 29.2 ± 0.49 28.0 ± 0.51 28.4 ± 0.43
(1000, 20) 94.9 ± 1.11 96.6 ± 0.78 91.6 ± 0.93 91.3 ± 1.40
(1000, 50) 81.4 ± 1.10 84.3 ± 0.59 74.5 ± 1.41 74.3 ± 0.93
(1000, 100) 63.4 ± 0.43 64.8 ± 0.57 56.2 ± 0.70 57.2 ± 0.76
(1000, 200) 44.1 ± 0.54 42.7 ± 0.72 38.7 ± 0.59 39.2 ± 0.49
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B Background443

B.1 Intuition of Equation (13)444

Equation (13) estimates the expected percentage of reconstructed samples in the optimal case of445

normally distributed features. To do this, we calculate the probability of a single sample being446

successfully reconstructed, which is equal to the expected recall percentage. Let B be the number of447

samples in our batch, and N be the number of neurons in our linear layer. Additionally, we assume448

that we have achieved the optimal probability of activation of 1/B for every neuron-sample pair.449

Given a single neuron ni and a single sample x, the probability that this neuron activates only for x450

and not for all other samples x′ ̸= x is451

1

B

(
B − 1

B

)B−1

, (15)

which we also refer to as the probability that ni isolates x. The complement of this event is the452

probability that the neuron does not isolate x:453

1− 1

B

(
B − 1

B

)B−1

. (16)

Raising this result to the power of N yields the probability that all neurons do not isolate x. Finally,454

the complement of this event is the probability that at least one neuron isolates x, which in turn results455

in x being reconstructed. This leads to the final formula:456

pR;B;N = E[R] = 1−

(
1− 1

B

(
B − 1

B

)B−1
)N

(17)

B.2 AGGP Hyperparameters457

Figure 5: Effect of averaging an increasing number of images n from the ImageNet dataset, on the
level of obfuscation.

To determine suitable hyperparameters for AGGP applied to ImageNet data, we investigated the level458

of obfuscation achieved when multiple images are averaged together in a gradient row. Figure 5459

displays an example of this effect, where the average is computed over an increasing number of460

images n. To quantify this effect more objectively, we conducted a systematic evaluation. We461

randomly selected one image and averaged it with an increasing number of additional images (from462

1 to 25), and then computed three commonly used metrics to quantify the similarity between the463

original image and the averaged image: the Structural Similarity Index Measure (SSIM, [29]), L1464

Distance, and Peak Signal-to-Noise Ratio (PSNR). By repeating this process 100 times and averaging465

the metrics across all experiments, we obtained the results shown in Figure 6. The results clearly466

show that PSNR and SSIM decrease sharply in the range [0, 15], while the L1 distance increases.467

After that, the values appear to converge slowly with little to no movement, which is why we decided468

to select 16 as our cut-off value c. As evident from Figure 5 and Figure 6, low activation counts469

provide little obscurity, while higher activation counts require minimal pruning to obscure data, which470

is why we set the bounds for pkeep to pl = 0.01 and pu = 0.95.471
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Figure 6:

Figure 7: Average similarity metrics (SSIM, L1 Distance, PSNR) between an original image from
the ImageNet dataset and its average with 1 to 25 additional images, repeated 100 times. PSNR and
SSIM drop significantly up to N=15, while L1 Distance increases.

C Experiment details472

All results that we report are averaged across 10 runs, each evaluated on 10 batches of unseen test473

data. For each individual run, the weights are randomly initialized, and the train / test split is shuffled474

randomly. In the case of malicious model initialization and data extraction, train images refer to those475

used by the PAIRS algorithm to tune the model’s parameters, while test images refer to those used to476

evaluate the reconstruction percentage. For each (N,B) setting, the standard error across these 10 runs477

is calculated, and multiplied by 1.96 to determine the 95% CI. For every batch, a single forward pass478

is performed, and the metrics A, P and R (see Equations (11) and (13)) are obtained. Since during479

evaluation, we have access to the internals of the model, we don’t have to examine the gradients to480

determine the data leakage. Rather we directly determine which samples will be leaked by observing481

the activation patterns in the maliciously initialized layer during the forward pass. Furthermore this482

direct access allows us to feed the input directly to our maliciously initialized layer, circumventing483

compute heavy convolutional layers that were initialized as identity functions.484

C.1 Datasets485

We used three datasets to evaluate our method: The ImageNet-1k [21] validation set (6GB, 50k486

images) 1, the CIFAR-10 [22] dataset 2 and the IMDB [23] binary sentiment classification dataset 3.487

All these datasets can be used for non-commercial research purposes.488

C.2 Compute Resources489

All experiments were run on an RTX 2060 Super with 8GB VRAM. Data-extraction runs in near490

real-time, scaling linearly with batch size and data dimensionality, as it is simply done in one step, by491

dividing the weight gradients by the bias gradients. Time to maliciously initialize the model varied492

1https://image-net.org/challenges/LSVRC/2012
2https://www.cs.toronto.edu/ kriz/cifar.html
3https://ai.stanford.edu/ amaas/data/sentiment
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across methods: QBI required less than 1 second in all settings, while PAIRS initialization times493

ranged from 10 seconds for CIFAR-10 (N=200, B=20) to 12 minutes for ImageNet (N=1000, B=200).494

For even larger layer sizes N, initialization time for PAIRS will scale linearly. Obtaining all results,495

for both QBI and PAIRS, across all possible combinations of N and B and all three datasets, averaged496

across 10 runs with random seeds for model intialization and train / test split, required approximately497

8 hours of compute. Evaluation of AGGP’s impact on training performance across 20 runs (10 Base,498

10 protected with AGGP) required about 2 hours of training time. Experiments evaluating QBI on499

synthetic data (see Table 5) took about 1 hour, averaging over 300 random runs per (N, B) setting.500

C.3 Image models501

Table 7 outlines the implementation of the model used for image data extraction. As Boenisch et al.502

[12] explain in their Appendix B, convolutional layers can be modified to pass the input to the next503

layer, effectively acting as an identity function. This can be achieved through various methods.504

Algorithm 3 provides a minimal working example using a 2D convolutional layer, suitable for RGB505

images. To preserve the image shape, we employ a kernel size of 3, padding of 1, and stride of506

1. Since we have three channels to transmit, we initialize three filters, each acting as the identity507

function for its respective channel. This is achieved by setting the weight values of the i-th filter to508

zero and then setting the center value of its weight matrix for the i-th channel to one. Additionally,509

randomly initialized filters could be added to obscure the modifications made to the model.510

Algorithm 3 Conv2D Identity Initialization Example
1: num_channels← 3
2: conv2d← CONV2D(in = 3, out = 3, k = 3, s = 1, p = 1)
3: for i← 0 to num_channels do
4: conv2d.weight.data[i, :, :, :]← 0
5: conv2d.weight.data[i, i, 1, 1]← 1
6: end for

Table 7: Architecture of models used in the experiments on image data. f: number of filters, k: kernel
size, s: stride, p: padding act: activation function, n: number of neurons. The size of the second to
last layer was varied across experiments.

CNN Architecture

Conv(f=128, k=(3, 3), s=1, p=1)
Conv(f=256, k=(3, 3), s=1, p=1)

Conv(f=3, k=(3, 3), s=1, p=1)
Flatten

<Optional> BatchNorm
Dense(n=1000, act=ReLU)

Dense(n=#classes, act=None)

Table 8: Architecture of models used in the experiments on the IMDB dataset. feat: vocabulary size,
dim: embedding size, act: activation function, n: number of neurons.

IMDB-Model Architecture

Embedding(feat=10_000, dim=250)
<Optional> BatchNorm

Dense(n=1000, act=ReLU)
Dense(n=1, act=None)
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NeurIPS Paper Checklist511

1. Claims512

Question: Do the main claims made in the abstract and introduction accurately reflect the513

paper’s contributions and scope?514

Answer: [Yes]515

Justification: Section 6 outlines our claimed performance gains on the stated datasets in516

detail, while our provided descriptions of the proposed methods (Section 4) in combination517

with the code provided by us allows their reproducibility. Section 4 further contains a518

detailed derivation of the proposed fundamental constraints, while Appendix A.3 lists our519

assessment using synthetic datasets. Finally section 5 introduces our defensive framework,520

which is further evaluated in section 6 and Appendix 2.521

Guidelines:522

• The answer NA means that the abstract and introduction do not include the claims523

made in the paper.524

• The abstract and/or introduction should clearly state the claims made, including the525

contributions made in the paper and important assumptions and limitations. A No or526

NA answer to this question will not be perceived well by the reviewers.527

• The claims made should match theoretical and experimental results, and reflect how528

much the results can be expected to generalize to other settings.529

• It is fine to include aspirational goals as motivation as long as it is clear that these goals530

are not attained by the paper.531

2. Limitations532

Question: Does the paper discuss the limitations of the work performed by the authors?533

Answer: [Yes]534

Justification: Section 7 outlines the limitations of our approach, e.g. the requirement for535

particular model architectures, and the existence of normalization parameters. Further,536

Appendix C.2 states the linear scaling behavior with increasing data size, batch size and537

layer size.538

Guidelines:539

• The answer NA means that the paper has no limitation while the answer No means that540

the paper has limitations, but those are not discussed in the paper.541

• The authors are encouraged to create a separate "Limitations" section in their paper.542

• The paper should point out any strong assumptions and how robust the results are to543

violations of these assumptions (e.g., independence assumptions, noiseless settings,544

model well-specification, asymptotic approximations only holding locally). The authors545

should reflect on how these assumptions might be violated in practice and what the546

implications would be.547

• The authors should reflect on the scope of the claims made, e.g., if the approach was548

only tested on a few datasets or with a few runs. In general, empirical results often549

depend on implicit assumptions, which should be articulated.550

• The authors should reflect on the factors that influence the performance of the approach.551

For example, a facial recognition algorithm may perform poorly when image resolution552

is low or images are taken in low lighting. Or a speech-to-text system might not be553

used reliably to provide closed captions for online lectures because it fails to handle554

technical jargon.555

• The authors should discuss the computational efficiency of the proposed algorithms556

and how they scale with dataset size.557

• If applicable, the authors should discuss possible limitations of their approach to558

address problems of privacy and fairness.559

• While the authors might fear that complete honesty about limitations might be used by560

reviewers as grounds for rejection, a worse outcome might be that reviewers discover561

limitations that aren’t acknowledged in the paper. The authors should use their best562
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judgment and recognize that individual actions in favor of transparency play an impor-563

tant role in developing norms that preserve the integrity of the community. Reviewers564

will be specifically instructed to not penalize honesty concerning limitations.565

3. Theory Assumptions and Proofs566

Question: For each theoretical result, does the paper provide the full set of assumptions and567

a complete (and correct) proof?568

Answer: [Yes]569

Justification: Our theoretical results derived in Section 4 list the full set of assumptions and570

a complete and correct proof. Supplementary material to further explain the intuition is571

provided in Appendix B.1.572

Guidelines:573

• The answer NA means that the paper does not include theoretical results.574

• All the theorems, formulas, and proofs in the paper should be numbered and cross-575

referenced.576

• All assumptions should be clearly stated or referenced in the statement of any theorems.577

• The proofs can either appear in the main paper or the supplemental material, but if578

they appear in the supplemental material, the authors are encouraged to provide a short579

proof sketch to provide intuition.580

• Inversely, any informal proof provided in the core of the paper should be complemented581

by formal proofs provided in appendix or supplemental material.582

• Theorems and Lemmas that the proof relies upon should be properly referenced.583

4. Experimental Result Reproducibility584

Question: Does the paper fully disclose all the information needed to reproduce the main ex-585

perimental results of the paper to the extent that it affects the main claims and/or conclusions586

of the paper (regardless of whether the code and data are provided or not)?587

Answer: [Yes]588

Justification: While we do provide the code to reproduce our results, Section 4 explains589

how to apply our algorithms in practice, while Section 6 and Appendix C provide further590

implementation details.591

Guidelines:592

• The answer NA means that the paper does not include experiments.593

• If the paper includes experiments, a No answer to this question will not be perceived594

well by the reviewers: Making the paper reproducible is important, regardless of595

whether the code and data are provided or not.596

• If the contribution is a dataset and/or model, the authors should describe the steps taken597

to make their results reproducible or verifiable.598

• Depending on the contribution, reproducibility can be accomplished in various ways.599

For example, if the contribution is a novel architecture, describing the architecture fully600

might suffice, or if the contribution is a specific model and empirical evaluation, it may601

be necessary to either make it possible for others to replicate the model with the same602

dataset, or provide access to the model. In general. releasing code and data is often603

one good way to accomplish this, but reproducibility can also be provided via detailed604

instructions for how to replicate the results, access to a hosted model (e.g., in the case605

of a large language model), releasing of a model checkpoint, or other means that are606

appropriate to the research performed.607

• While NeurIPS does not require releasing code, the conference does require all submis-608

sions to provide some reasonable avenue for reproducibility, which may depend on the609

nature of the contribution. For example610

(a) If the contribution is primarily a new algorithm, the paper should make it clear how611

to reproduce that algorithm.612

(b) If the contribution is primarily a new model architecture, the paper should describe613

the architecture clearly and fully.614
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(c) If the contribution is a new model (e.g., a large language model), then there should615

either be a way to access this model for reproducing the results or a way to reproduce616

the model (e.g., with an open-source dataset or instructions for how to construct617

the dataset).618

(d) We recognize that reproducibility may be tricky in some cases, in which case619

authors are welcome to describe the particular way they provide for reproducibility.620

In the case of closed-source models, it may be that access to the model is limited in621

some way (e.g., to registered users), but it should be possible for other researchers622

to have some path to reproducing or verifying the results.623

5. Open access to data and code624

Question: Does the paper provide open access to the data and code, with sufficient instruc-625

tions to faithfully reproduce the main experimental results, as described in supplemental626

material?627

Answer: [Yes]628

Justification: We provide open access to dedicated scripts to reproduce all reported results,629

along with demo notebooks that enable a quick demonstration and visualization of our630

methods (3 second runtime to demonstrate a full experiment including QBI and extraction631

on the CIFAR-10 dataset).632

Guidelines:633

• The answer NA means that paper does not include experiments requiring code.634

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/635

public/guides/CodeSubmissionPolicy) for more details.636

• While we encourage the release of code and data, we understand that this might not be637

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not638

including code, unless this is central to the contribution (e.g., for a new open-source639

benchmark).640

• The instructions should contain the exact command and environment needed to run to641

reproduce the results. See the NeurIPS code and data submission guidelines (https:642

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.643

• The authors should provide instructions on data access and preparation, including how644

to access the raw data, preprocessed data, intermediate data, and generated data, etc.645

• The authors should provide scripts to reproduce all experimental results for the new646

proposed method and baselines. If only a subset of experiments are reproducible, they647

should state which ones are omitted from the script and why.648

• At submission time, to preserve anonymity, the authors should release anonymized649

versions (if applicable).650

• Providing as much information as possible in supplemental material (appended to the651

paper) is recommended, but including URLs to data and code is permitted.652

6. Experimental Setting/Details653

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-654

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the655

results?656

Answer: [Yes]657

Justification: Implementation details are stated in Section 4, 6, Appendix C, and available658

via our shared code.659

Guidelines:660

• The answer NA means that the paper does not include experiments.661

• The experimental setting should be presented in the core of the paper to a level of detail662

that is necessary to appreciate the results and make sense of them.663

• The full details can be provided either with the code, in appendix, or as supplemental664

material.665

7. Experiment Statistical Significance666
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Question: Does the paper report error bars suitably and correctly defined or other appropriate667

information about the statistical significance of the experiments?668

Answer: [Yes]669

Justification: For R, which is the main metric of success (percentage of perfectly recon-670

structed samples), the 95% CI is provided with every result, see Table 1 and Table 2. For671

the secondary metrics A and P , the standard error is omitted to improve readability (see672

Table 3, 4 and 5), as neither A nor P directly measure the success of an attack. Section C.3673

explains the method for calculating the error margins.674

Guidelines:675

• The answer NA means that the paper does not include experiments.676

• The authors should answer "Yes" if the results are accompanied by error bars, confi-677

dence intervals, or statistical significance tests, at least for the experiments that support678

the main claims of the paper.679

• The factors of variability that the error bars are capturing should be clearly stated (for680

example, train/test split, initialization, random drawing of some parameter, or overall681

run with given experimental conditions).682

• The method for calculating the error bars should be explained (closed form formula,683

call to a library function, bootstrap, etc.)684

• The assumptions made should be given (e.g., Normally distributed errors).685

• It should be clear whether the error bar is the standard deviation or the standard error686

of the mean.687

• It is OK to report 1-sigma error bars, but one should state it. The authors should688

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis689

of Normality of errors is not verified.690

• For asymmetric distributions, the authors should be careful not to show in tables or691

figures symmetric error bars that would yield results that are out of range (e.g. negative692

error rates).693

• If error bars are reported in tables or plots, The authors should explain in the text how694

they were calculated and reference the corresponding figures or tables in the text.695

8. Experiments Compute Resources696

Question: For each experiment, does the paper provide sufficient information on the com-697

puter resources (type of compute workers, memory, time of execution) needed to reproduce698

the experiments?699

Answer: [Yes]700

Justification: Appendix C.2 states the hardware that was used, including memory and time701

of execution for all experiments.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,705

or cloud provider, including relevant memory and storage.706

• The paper should provide the amount of compute required for each of the individual707

experimental runs as well as estimate the total compute.708

• The paper should disclose whether the full research project required more compute709

than the experiments reported in the paper (e.g., preliminary or failed experiments that710

didn’t make it into the paper).711

9. Code Of Ethics712

Question: Does the research conducted in the paper conform, in every respect, with the713

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?714

Answer: [Yes]715

Justification: We have reviewed the code of ethics and verified that the datasets we used716

conform to the guidelines. Furthermore in Section 7 and 8 we acknowledge the potential717

impact on security and privacy in FL attack details.718
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Guidelines:719

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.720

• If the authors answer No, they should explain the special circumstances that require a721

deviation from the Code of Ethics.722

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-723

eration due to laws or regulations in their jurisdiction).724

10. Broader Impacts725

Question: Does the paper discuss both potential positive societal impacts and negative726

societal impacts of the work performed?727

Answer: [Yes]728

Justification: Section 7 and 8 highlight the potential impact on safety and privacy of FL729

systems (even under application of SA and DDP). Section 8 emphasizes our aim to facilitate730

the development of more robust FL systems by sharing our attack details, while our proposal731

of the defensive framework AGGP (Section 5) is a first step in this direction.732

Guidelines:733

• The answer NA means that there is no societal impact of the work performed.734

• If the authors answer NA or No, they should explain why their work has no societal735

impact or why the paper does not address societal impact.736

• Examples of negative societal impacts include potential malicious or unintended uses737

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations738

(e.g., deployment of technologies that could make decisions that unfairly impact specific739

groups), privacy considerations, and security considerations.740

• The conference expects that many papers will be foundational research and not tied741

to particular applications, let alone deployments. However, if there is a direct path to742

any negative applications, the authors should point it out. For example, it is legitimate743

to point out that an improvement in the quality of generative models could be used to744

generate deepfakes for disinformation. On the other hand, it is not needed to point out745

that a generic algorithm for optimizing neural networks could enable people to train746

models that generate Deepfakes faster.747

• The authors should consider possible harms that could arise when the technology is748

being used as intended and functioning correctly, harms that could arise when the749

technology is being used as intended but gives incorrect results, and harms following750

from (intentional or unintentional) misuse of the technology.751

• If there are negative societal impacts, the authors could also discuss possible mitigation752

strategies (e.g., gated release of models, providing defenses in addition to attacks,753

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from754

feedback over time, improving the efficiency and accessibility of ML).755

11. Safeguards756

Question: Does the paper describe safeguards that have been put in place for responsible757

release of data or models that have a high risk for misuse (e.g., pretrained language models,758

image generators, or scraped datasets)?759

Answer: [NA]760

Justification: We do not provide datasets or pretrained models.761

Guidelines:762

• The answer NA means that the paper poses no such risks.763

• Released models that have a high risk for misuse or dual-use should be released with764

necessary safeguards to allow for controlled use of the model, for example by requiring765

that users adhere to usage guidelines or restrictions to access the model or implementing766

safety filters.767

• Datasets that have been scraped from the Internet could pose safety risks. The authors768

should describe how they avoided releasing unsafe images.769

• We recognize that providing effective safeguards is challenging, and many papers do770

not require this, but we encourage authors to take this into account and make a best771

faith effort.772
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12. Licenses for existing assets773

Question: Are the creators or original owners of assets (e.g., code, data, models), used in774

the paper, properly credited and are the license and terms of use explicitly mentioned and775

properly respected?776

Answer: [Yes]777

Justification: Creators, URLs and terms of use are named in Appendix C.1.778

Guidelines:779

• The answer NA means that the paper does not use existing assets.780

• The authors should cite the original paper that produced the code package or dataset.781

• The authors should state which version of the asset is used and, if possible, include a782

URL.783

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.784

• For scraped data from a particular source (e.g., website), the copyright and terms of785

service of that source should be provided.786

• If assets are released, the license, copyright information, and terms of use in the787

package should be provided. For popular datasets, paperswithcode.com/datasets788

has curated licenses for some datasets. Their licensing guide can help determine the789

license of a dataset.790

• For existing datasets that are re-packaged, both the original license and the license of791

the derived asset (if it has changed) should be provided.792

• If this information is not available online, the authors are encouraged to reach out to793

the asset’s creators.794

13. New Assets795

Question: Are new assets introduced in the paper well documented and is the documentation796

provided alongside the assets?797

Answer: [Yes]798

Justification: We are releasing our code, together with detailed instructions on how to install,799

set up and run our experiments. The code contains documentation, further detailing the800

operational mechanisms.801

Guidelines:802

• The answer NA means that the paper does not release new assets.803

• Researchers should communicate the details of the dataset/code/model as part of their804

submissions via structured templates. This includes details about training, license,805

limitations, etc.806

• The paper should discuss whether and how consent was obtained from people whose807

asset is used.808

• At submission time, remember to anonymize your assets (if applicable). You can either809

create an anonymized URL or include an anonymized zip file.810

14. Crowdsourcing and Research with Human Subjects811

Question: For crowdsourcing experiments and research with human subjects, does the paper812

include the full text of instructions given to participants and screenshots, if applicable, as813

well as details about compensation (if any)?814

Answer: [NA]815

Justification: Our paper does not involve crowdsourcing or research with human subjects.816

Guidelines:817

• The answer NA means that the paper does not involve crowdsourcing nor research with818

human subjects.819

• Including this information in the supplemental material is fine, but if the main contribu-820

tion of the paper involves human subjects, then as much detail as possible should be821

included in the main paper.822
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,823

or other labor should be paid at least the minimum wage in the country of the data824

collector.825

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human826

Subjects827

Question: Does the paper describe potential risks incurred by study participants, whether828

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)829

approvals (or an equivalent approval/review based on the requirements of your country or830

institution) were obtained?831

Answer: [NA]832

Justification: Our paper does not involve crowdsourcing or research with human subjects.833

Guidelines:834

• The answer NA means that the paper does not involve crowdsourcing nor research with835

human subjects.836

• Depending on the country in which research is conducted, IRB approval (or equivalent)837

may be required for any human subjects research. If you obtained IRB approval, you838

should clearly state this in the paper.839

• We recognize that the procedures for this may vary significantly between institutions840

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the841

guidelines for their institution.842

• For initial submissions, do not include any information that would break anonymity (if843

applicable), such as the institution conducting the review.844
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